76 research outputs found

    Modelling the effect of round window stiffness on residual hearing after cochlear implantation

    Get PDF
    Preservation of residual hearing after cochlear implantation is now considered an important goal of surgery. However, studies indicate an average post-operative hearing loss of around 20 dB at low frequencies. One factor which may contribute to post-operative hearing loss, but which has received little attention in the literature to date, is the increased stiffness of the round window, due to the physical presence of the cochlear implant, and to its subsequent thickening or to bone growth around it. A finite element model was used to estimate that there is approximately a 100-fold increase in the round window stiffness due to a cochlear implant passing through it. A lumped element model was then developed to study the effects of this change in stiffness on the acoustic response of the cochlea. As the round window stiffness increases, the effects of the cochlear and vestibular aqueducts become more important. An increase of round window stiffness by a factor of 10 is predicted to have little effect on residual hearing, but increasing this stiffness by a factor of 100 reduces the acoustic sensitivity of the cochlea by about 20 dB, below 1 kHz, in reasonable agreement with the observed loss in residual hearing after implantation. It is also shown that the effect of this stiffening could be reduced by incorporating a small gas bubble within the cochlear implant

    Optimizing frequency-to-electrode allocation for individual cochlear implant users

    No full text
    Individual adjustment of frequency-to-electrode assignment in cochlear implants (CIs) may potentially improve speech perception outcomes. Twelve adult CI users were recruited for an experiment, in which frequency maps were adjusted using insertion angles estimated from post-operative x rays; results were analyzed for ten participants with good quality x rays. The allocations were a mapping to the Greenwood function, a compressed map limited to the area containing spiral ganglion (SG) cells, a reduced frequency range map (RFR), and participants' clinical maps. A trial period of at least six weeks was given for the clinical, Greenwood, and SG maps although participants could return to their clinical map if they wished. Performance with the Greenwood map was poor for both sentence and vowel perception and correlated with insertion angle; performance with the SG map was poorer than for the clinical map. The RFR map was significantly better than the clinical map for three participants, for sentence perception, but worse for three others. Those with improved performance had relatively deep insertions and poor electrode discrimination ability for apical electrodes. The results suggest that CI performance could be improved by adjustment of the frequency allocation, based on a measure of insertion angle and/or electrode discrimination abilit

    A Cold Nearby Cloud Inside the Local Bubble

    Get PDF
    The high-latitude Galactic H I cloud toward the extragalactic radio source 3C 225 is characterized by very narrow 21 cm emission and absorption indicative of a very low H I spin temperature of about 20 K. Through high-resolution optical spectroscopy, we report the detection of strong, very narrow Na I absorption corresponding to this cloud toward a number of nearby stars. Assuming that the turbulent H I and Na I motions are similar, we derive a cloud temperature of 20 (+6, -8) K (in complete agreement with the 21 cm results) and a line-of-sight turbulent velocity of 0.37+/-0.08 km/s from a comparison of the H I and Na I absorption linewidths. We also place a firm upper limit of 45 pc on the distance of the cloud, which situates it well inside the Local Bubble in this direction and makes it the nearest-known cold diffuse cloud discovered to date.Comment: 11 pages, 3 figures, accepted for publication in ApJ Letter

    Electro-Haptic Stimulation: A New Approach for Improving Cochlear-Implant Listening

    Get PDF
    Cochlear implants (CIs) have been remarkably successful at restoring speech perception for severely to profoundly deaf individuals. Despite their success, several limitations remain, particularly in CI users’ ability to understand speech in noisy environments, locate sound sources, and enjoy music. A new multimodal approach has been proposed that uses haptic stimulation to provide sound information that is poorly transmitted by the implant. This augmenting of the electrical CI signal with haptic stimulation (electro-haptic stimulation; EHS) has been shown to improve speech-in-noise performance and sound localization in CI users. There is also evidence that it could enhance music perception. We review the evidence of EHS enhancement of CI listening and discuss key areas where further research is required. These include understanding the neural basis of EHS enhancement, understanding the effectiveness of EHS across different clinical populations, and the optimization of signal-processing strategies. We also discuss the significant potential for a new generation of haptic neuroprosthetic devices to aid those who cannot access hearing-assistive technology, either because of biomedical or healthcare-access issues. While significant further research and development is required, we conclude that EHS represents a promising new approach that could, in the near future, offer a non-invasive, inexpensive means of substantially improving clinical outcomes for hearing-impaired individuals

    The Local Leo Cold Cloud and New Limits on a Local Hot Bubble

    Full text link
    We present a multi-wavelength study of the local Leo cold cloud (LLCC), a very nearby, very cold cloud in the interstellar medium. Through stellar absorption studies we find that the LLCC is between 11.3 pc and 24.3 pc away, making it the closest known cold neutral medium cloud and well within the boundaries of the local cavity. Observations of the cloud in the 21-cm HI line reveal that the LLCC is very cold, with temperatures ranging from 15 K to 30 K, and is best fit with a model composed of two colliding components. The cloud has associated 100 micron thermal dust emission, pointing to a somewhat low dust-to-gas ratio of 48 x 10^-22 MJy sr^-1 cm^2. We find that the LLCC is too far away to be generated by the collision among the nearby complex of local interstellar clouds, but that the small relative velocities indicate that the LLCC is somehow related to these clouds. We use the LLCC to conduct a shadowing experiment in 1/4 keV X-rays, allowing us to differentiate between different possible origins for the observed soft X-ray background. We find that a local hot bubble model alone cannot account for the low-latitude soft X-ray background, but that isotropic emission from solar wind charge exchange does reproduce our data. In a combined local hot bubble and solar wind charge exchange scenario, we rule out emission from a local hot bubble with an 1/4 keV emissivity greater than 1.1 Snowdens / pc at 3 sigma, 4 times lower than previous estimates. This result dramatically changes our perspective on our local interstellar medium.Comment: 13 pages, 12 figures. Accepted for publication in the Astrophysical Journal. Vector figure version available at http://www.astro.columbia.edu/~jpeek

    A Music-Related Quality of Life measure to guide music rehabilitation for adult CI users

    Get PDF
    Purpose: A music-related quality of life (MuRQoL) questionnaire was developed for the evaluation of music rehabilitation for adult cochlear implant (CI) users. The present studies were aimed at refinement and validation. Method: Twenty-four experts reviewed the MuRQoL items for face validity. A refined version was completed by 147 adult CI users and psychometric techniques were used for item selection, assessment of reliability and definition of the factor structure. The same participants completed the Short Form Health Survey for construct validation. MuRQoL responses from 68 CI users were compared with those of a matched group of normal-hearing (NH) adults. Results: Eighteen items measuring music perception & engagement and 18 items measuring their importance were selected; they grouped together into two domains. The final questionnaire has high internal consistency and repeatability. Significant differences between CI users and NH adults and a correlation between music engagement and quality of life (QoL) support construct validity. Scores of music perception & engagement and importance for the 18 items can be combined to assess the impact of music on the QoL. Conclusion: The MuRQoL questionnaire is a reliable and valid measure of self-reported music perception, engagement and their importance for adult CI users with potential to guide music aural rehabilitation
    • …
    corecore