16 research outputs found

    AMOLED Displays with In-Pixel Photodetector

    Get PDF
    The focus of this chapter is to consider additional functionalities beyond the regular display function of an active matrix organic light-emitting diode (AMOLED) display. We will discuss how to improve the resolution of the array with OLED lithography pushing to AR/VR standards. Also, the chapter will give an insight into pixel design and layout with a strong focus on high resolution, enabling open areas in pixels for additional functionalities. An example of such additional functionalities would be to include a photodetector in pixel, requiring the need to include in-panel TFT readout at the peripherals of the full-display sensor array for applications such as finger and palmprint sensing

    Pyruvate dehydrogenase fuels a critical citrate pool that is essential for Th17 cell effector functions

    Get PDF
    Pyruvate dehydrogenase (PDH) is the central enzyme connecting glycolysis and the tricarboxylic acid (TCA) cycle. The importance of PDH function in T helper 17 (Th17) cells still remains to be studied. Here, we show that PDH is essential for the generation of a glucose-derived citrate pool needed for Th17 cell proliferation, survival, and effector function. In vivo, mice harboring a T cell-specific deletion of PDH are less susceptible to developing experimental autoimmune encephalomyelitis. Mechanistically, the absence of PDH in Th17 cells increases glutaminolysis, glycolysis, and lipid uptake in a mammalian target of rapamycin (mTOR)-dependent manner. However, cellular citrate remains critically low in mutant Th17 cells, which interferes with oxidative phosphorylation (OXPHOS), lipid synthesis, and histone acetylation, crucial for transcription of Th17 signature genes. Increasing cellular citrate in PDH-deficient Th17 cells restores their metabolism and function, identifying a metabolic feedback loop within the central carbon metabolism that may offer possibilities for therapeutically targeting Th17 cell-driven autoimmunity

    Rationale, design and methods for a randomised and controlled trial to evaluate "Animal Fun" - a program designed to enhance physical and mental health in young children

    Get PDF
    Background: Children with poor motor ability have been found to engage less in physical activities than other children, and a lack of physical activity has been linked to problems such as obesity, lowered bone mineral density and cardiovascular risk factors. Furthermore, if children are confident with their fine and gross motor skills, they are more likely to engage in physical activities such as sports, crafts, dancing and other physical activity programs outside of the school curriculum which are important activities for psychosocial development. The primary objective of this project is to comprehensively evaluate a whole of class physical activity program called Animal Fun designed for Pre-Primary children. This program was designed to improve the child's movement skills, both fine and gross, and their perceptions of their movement ability, promote appropriate social skills and improve social-emotional development. Methods: The proposed randomized and controlled trial uses a multivariate nested cohort design to examine the physical (motor coordination) and psychosocial (self perceptions, anxiety, social competence) outcomes of the program. The Animal Fun program is a teacher delivered universal program incorporating animal actions to facilitate motor skill and social skill acquisition and practice. Pre-intervention scores on motor and psychosocial variables for six control schools and six intervention schools will be compared with post-intervention scores (end of Pre-Primary year) and scores taken 12 months later after the children's transition to primary school Year 1. 520 children aged 4.5 to 6 years will be recruited and it is anticipated that 360 children will be retained to the 1 year follow-up. There will be equal numbers of boys and girls.Discussion: If this program is found to improve the child's motor and psychosocial skills, this will assist in the child's transition into the first year of school. As a result of these changes, it is anticipated that children will have greater enjoyment participating in physical activities which will further promote long term physical and mental health

    Security on Plastics: Fake or Real?

    No full text
    Electronic devices on plastic foil, also referred to as flexible electronics, are making their way into mainstream applications. In the near future, flexible electronic labels can be embedded in smart blisters, but also used as mainstream technology for flexible medical patches. A key technology for flexible electronics is based on thin-film transistors, which have the potential to be manufactured at low cost, making them an ideal candidate for these applications. Yet, up to now, no-one is taking digital security into account in the design of flexible electronics.In this paper, we present, to our knowledge, the first cryptographic core on plastic foil. Two main research challenges arise. The first challenge is related to the reliability of the circuit, which typically decreases when the circuit area increases. By integrating cryptographic modules, we explore the limits of the technology, since the smallest lightweight block ciphers feature a larger area than the largest digital circuit on flex foil reported up to now. The second challenge is related to key hiding. The relatively large features on the chip and the fact that electronic chips on plastics are used as bare dies, i.e. they are not packaged, make it easy to read out the value of the stored secret key. Because there is no dedicated non-volatile memory technology yet, existing methods for writing data to the flexible chip after fabrication are based on wire cutting with a laser or inkjet printing. With these techniques, however, it is extremely easy to “see” the value of the secret key under a microscope. We propose a novel solution that allows us to invisibly program the key after fabrication

    Security on Plastics: Fake or Real?

    No full text
    Electronic devices on plastic foil, also referred to as flexible electronics, are making their way into mainstream applications. In the near future, flexible electronic labels can be embedded in smart blisters, but also used as mainstream technology for flexible medical patches. A key technology for flexible electronics is based on thin-film transistors, which have the potential to be manufactured at low cost, making them an ideal candidate for these applications. Yet, up to now, no-one is taking digital security into account in the design of flexible electronics.In this paper, we present, to our knowledge, the first cryptographic core on plastic foil. Two main research challenges arise. The first challenge is related to the reliability of the circuit, which typically decreases when the circuit area increases. By integrating cryptographic modules, we explore the limits of the technology, since the smallest lightweight block ciphers feature a larger area than the largest digital circuit on flex foil reported up to now. The second challenge is related to key hiding. The relatively large features on the chip and the fact that electronic chips on plastics are used as bare dies, i.e. they are not packaged, make it easy to read out the value of the stored secret key. Because there is no dedicated non-volatile memory technology yet, existing methods for writing data to the flexible chip after fabrication are based on wire cutting with a laser or inkjet printing. With these techniques, however, it is extremely easy to “see” the value of the secret key under a microscope. We propose a novel solution that allows us to invisibly program the key after fabrication.copyright: Copyright (c) 2019 IACR Transactions on Cryptographic Hardware and Embedded Systems shorttitle: Security on Plastics keywords: flexible electronics,IGZO (indium-gallium-zinc-oxide),KTANTAN,low-cost cryptographic hardware,thin-film transistors (TFTs) on plastic foil file: C\:\Users\jangenoe\Zotero\storage\7KBKA5D3\Mentens et al. - 2019 - Security on Plastics Fake or Real.pdf;C\:\Users\jangenoe\Zotero\storage\PCCBTTRK\8343.htmlstatus: publishe

    High Performance Dual-Gate Dual-Layer Amorphous Oxide Semiconductors TFTs on PI Foil for Display Application

    No full text
    We present dual-gate (DG) dual-layer (a-ITZO and a-IGZO) amorphous oxide TFTs integrated on polyimide (PI) foil. The fabricated TFTs show an apparent dual-gate field-effect mobility (μ\mathrmμFE) of 45.0 cm2/ (V.s), sub-threshold slope (SS-1) of 0.40 V/decade and ION/IOFF ratio of >>108. The DG dual-layer TFT based ring-oscillators exhibit faster oscillation frequencies (fosc) compared to DG a-IGZO TFT based ring-oscillators. These TFTs are paving the way to faster scan drivers and higher resolution displays. It is also verified that with DG dual-layer TFTs, the current variation can be reduced when applying an off-panel compensation method to the asymmetric channel.lccn: C42287 shorttitle: P-12 keywords: flexible displays,Metal-oxide semiconductors,TF

    40x Current Variation Reduction Enabled by an External VT-Compensation Scheme for AMOLED Displays using a 3T2C-Pixel Circuit with Dual-Gate TFTs

    No full text
    A novel external VT compensation method, using a simple driving scheme, is presented, enabling high resolution, yet uniform displays, regardless of the size. The uniformity can be maintained for initial VT nonuniformities as well as VT shifts occurring during operation, like bias stress. The characterized display area shows a significant reduction in current variation, transforming ~23% variation without compensation into 0.56% variation after calibration

    A Th17 cell-intrinsic glutathione/mitochondrial-IL-22 axis protects against intestinal inflammation.

    No full text
    Although the intestinal tract is a major site of reactive oxygen species (ROS) generation, the mechanisms by which antioxidant defense in gut T cells contribute to intestinal homeostasis are currently unknown. Here we show, using T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that the ensuing loss of glutathione (GSH) impairs the production of gut-protective IL-22 by Th17 cells within the lamina propria. Although Gclc ablation does not affect T cell cytokine secretion in the gut of mice at steady-state, infection with C. rodentium increases ROS, inhibits mitochondrial gene expression and mitochondrial function in Gclc-deficient Th17 cells. These mitochondrial deficits affect the PI3K/AKT/mTOR pathway, leading to reduced phosphorylation of the translation repressor 4E-BP1. As a consequence, the initiation of translation is restricted, resulting in decreased protein synthesis of IL-22. Loss of IL-22 results in poor bacterial clearance, enhanced intestinal damage, and high mortality. ROS-scavenging, reconstitution of IL-22 expression or IL-22 supplementation in vivo prevent the appearance of these pathologies. Our results demonstrate the existence of a previously unappreciated role for Th17 cell-intrinsic GSH coupling to promote mitochondrial function, IL-22 translation and signaling. These data reveal an axis that is essential for maintaining the integrity of the intestinal barrier and protecting it from damage caused by gastrointestinal infection
    corecore