11 research outputs found

    The primate EAE model points at EBV-infected B cells as a preferential therapy target in multiple sclerosis

    Get PDF
    The remarkable clinical efficacy of anti-CD20 monoclonal antibodies (mAb) in relapsing-remitting multiple sclerosis points at the critical involvement of B cells in the disease. However, the exact pathogenic contribution of B cells is poorly understood. In this publication we review new data on the role of CD20+ B cells in a unique experimental autoimmune encephalomyelitis (EAE) model in common marmosets (Callithrix jacchus), a small-bodied neotropical primate. We will also discuss the relevance of these data for MS. Different from rodent EAE models, but similar to MS, disease progression in marmosets can develop independent of autoantibodies. Progressive disease is mediated by MHC class Ib (Caja-E) restricte

    Application of Ecological Stoichiometry for Sustainable Acquisition of Ecosystem Services

    No full text
    Human activities have differentially altered biogeochemical cycling at local, regional and global scales. We propose that a stoichiometric approach, examining the fluxes of multiple elements and the ratio between them, may be a useful tool for better understanding human effects on ecosystem processes and services. The different scale of impacts of the elements carbon, nitrogen and phosphorus and the different nature of their biogeochemical cycles, imply a large variation of their stoichiometric ratios in space and time and thus divergent impacts on biota. In this paper, we examine the effects of anthropogenic perturbations on nutrient ratios in ecosystems in two examples and one case study. Altered stoichiometry in agricultural systems (example 1) can affect not only crop yield and quality but also the interactions between plants and their pollinators, pests and pathogens. Human activities have also altered stoichiometry in coastal ecosystems (example 2). Increased N loading has especially lead to increased N:P and reduced Si:N ratios, with detrimental effects on ecosystem services derived from coastal pelagic food webs, such as fish yield and water quality. The terrestrial /aquatic linkage in stoichiometric alterations is illustrated with a case study, the Mississippi River watershed, where anthropogenic activities have caused stoichiometric changes that have propagated through the watershed into the northern Gulf of Mexico. Coupled with altered stoichiometric nutrient inputs are the inherent differences in variation and sensitivity of different ecosystems to anthropogenic disturbance. Furthermore, the connections among the components of a watershed may result in downstream cascades of disrupted functioning. Applying a multiple element perspective to understanding and addressing societal needs is a new direction for both ecological stoichiometry and sustainability.JRC.H.5-Rural, water and ecosystem resource

    Thermal Analysis and Design of Multi-layer Insulation for Re-entry Aerodynamic Heating

    No full text
    The combined radiation/conduction heat transfer in high-temperature multi-layer insulations was modeled using a finite volume numerical model. The numerical model was validated by comparison with steady-state effective thermal conductivity measurements, and by transient thermal tests simulating re-entry aerodynamic heating conditions. A design of experiments technique was used to investigate optimum design of multi-layer insulations for re-entry aerodynamic heating. It was found that use of 2 mm foil spacing and locating the foils near the hot boundary with the top foil 2 mm away from the hot boundary resulted in the most effective insulation design. A 76.2 mm thick multi-layer insulation using 1, 4, or 16 foils resulted in 2.9, 7.2, or 22.2 percent mass per unit area savings compared to a fibrous insulation sample at the same thickness, respectively
    corecore