162 research outputs found

    The mass gap and vacuum energy of the Gross-Neveu model via the 2PPI expansion

    Get PDF
    We introduce the 2PPI (2-point-particle-irreducible) expansion, which sums bubble graphs to all orders. We prove the renormalizibility of this summation. We use it on the Gross-Neveu model to calculate the mass gap and vacuum energy. After an optimization of the expansion, the final results are qualitatively good.Comment: 14 pages,19 eps figures, revtex

    The effects of Gribov copies in 2D gauge theories

    Get PDF
    In previous works, we have shown that the Gribov-Zwanziger action, which implements the restriction of the domain of integration in the path integral to the Gribov region, generates extra dynamical effects which influence the infrared behaviour of the gluon and ghost propagator in SU(N) Yang-Mills gauge theories. The latter are in good agreement with the most recent lattice data obtained at large volumes, both in 4D and in 3D. More precisely, the gluon propagator is suppressed and does not vanish at zero momentum, while the ghost propagator keeps a 1/p^2 behaviour for p^2\approx0. Instead, in 2D, the lattice data revealed a vanishing zero momentum gluon propagator and an infrared enhanced ghost, in support of the usual Gribov-Zwanziger scenario. We will now show that the 2D version of the Gribov-Zwanziger action still gives results in qualitative agreement with these lattice data, as the peculiar infrared nature of 2D gauge theories precludes the analogue of the dynamical effect otherwise present in 4D and 3D. Simultaneously, we also observe that the Gribov-Zwanziger restriction serves as an infrared regulating mechanism.Comment: 10 pages, 1 .eps figur

    Dynamical mass generation by source inversion: Calculating the mass gap of the Gross-Neveu model

    Get PDF
    We probe the U(N) Gross-Neveu model with a source-term JΨˉΨJ\bar{\Psi}\Psi. We find an expression for the renormalization scheme and scale invariant source J^\hat{J}, as a function of the generated mass gap. The expansion of this function is organized in such a way that all scheme and scale dependence is reduced to one single parameter d. We get a non-perturbative mass gap as the solution of J^=0\hat{J}=0. In one loop we find that any physical choice for d gives good results for high values of N. In two loops we can determine d self-consistently by the principle of minimal sensitivity and find remarkably accurate results for N>2.Comment: 13 pages, 3 figures, added referenc

    Remarks on the Gribov horizon and dynamical mass generation in Euclidean Yang-Mills theories

    Get PDF
    The effect of the dynamical mass generation on the gluon and ghost propagators in Euclidean Yang-Mills theory in the Landau gauge is analysed within Zwanziger's local formulation of the Gribov horizon.Comment: Work presented at IX Hadron Physics and VII Relativistic Aspects of Nuclear Physics, Angra dos Reis, RJ, Brazil, March 28 to April 03, 200

    UV finiteness of 3D Yang-Mills theories with a regulating mass in the Landau gauge

    Full text link
    We prove that three-dimensional Yang-Mills theories in the Landau gauge supplemented with a infrared regulating, parity preserving mass term are ultraviolet finite to all orders. We also extend this result to the Curci-Ferrari gauge.Comment: 6 page

    A Technique for generating Feynman Diagrams

    Get PDF
    We present a simple technique that allows to generate Feynman diagrams for vector models with interactions of order 2n2n and similar models (Gross-Neveu, Thirring model), using a bootstrap equation that uses only the free field value of the energy as an input. The method allows to find the diagrams to, in principle, arbitrarily high order and applies to both energy and correlation functions. It automatically generates the correct symmetry factor (as a function of the number of components of the field) and the correct sign for any diagram in the case of fermion loops. We briefly discuss the possibility of treating QED as a Thirring model with non-local interaction.Comment: 19 pages, LateX, To be published in Z. f. Phys.

    Gribov no-pole condition, Zwanziger horizon function, Kugo-Ojima confinement criterion, boundary conditions, BRST breaking and all that

    Get PDF
    We aim to offer a kind of unifying view on two popular topics in the studies of nonperturbative aspects of Yang-Mills theories in the Landau gauge: the so-called Gribov-Zwanziger approach and the Kugo-Ojima confinement criterion. Borrowing results from statistical thermodynamics, we show that imposing the Kugo-Ojima confinement criterion as a boundary condition leads to a modified yet renormalizable partition function. We verify that the resulting partition function is equivalent with the one obtained by Gribov and Zwanziger, which restricts the domain of integration in the path integral within the first Gribov horizon. The construction of an action implementing a boundary condition allows one to discuss the symmetries of the system in the presence of the boundary. In particular, the conventional BRST symmetry is softly broken.Comment: 5 pages. v2 matches version to appear in PhysRevD (RC

    New features of the gluon and ghost propagator in the infrared region from the Gribov-Zwanziger approach

    Full text link
    So far, the infrared behavior of the gluon and ghost propagator based on the Gribov-Zwanziger approach predicted a positivity violating gluon propagator vanishing at zero momentum, and an infrared enhanced ghost propagator. However, recent data based on huge lattices have revealed a positivity violating gluon propagator which turns out to attain a finite nonvanishing value very close to zero momentum. At the same time the ghost propagator does not seem to be infrared enhanced anymore. We point out that these new features can be accounted for by yet unexploited dynamical effects within the Gribov-Zwanziger approach, leading to an infrared behavior in qualitatively good agreement with the new data.Comment: 4 pages, 1 .eps figure. Package braket.sty include

    Off-diagonal mass generation for Yang-Mills theories in the maximal Abelian gauge

    Full text link
    We investigate a dynamical mass generation mechanism for the off-diagonal gluons and ghosts in SU(N) Yang-Mills theories, quantized in the maximal Abelian gauge. Such a mass can be seen as evidence for the Abelian dominance in that gauge. It originates from the condensation of a mixed gluon-ghost operator of mass dimension two, which lowers the vacuum energy. We construct an effective potential for this operator by a combined use of the local composite operators technique with algebraic renormalization and we discuss the gauge parameter independence of the results. We also show that it is possible to connect the vacuum energy, due to the mass dimension two condensate discussed here, with the non-trivial vacuum energy originating from the condensate , which has attracted much attention in the Landau gauge.Comment: 15 pages. Revtex. 1 .eps figure. Talk given by D.Dudal at XXV Encontro Nacional de Fisica de Particulas e Campos, Caxambu, Minas Gerais, Brasil, 24-28 Aug 2004. To appear in Brazilian Journal of Physic
    • …
    corecore