16 research outputs found

    An unusually powerful mode of low-frequency sound interference due to defective hair bundles of the auditory outer hair cells

    Get PDF
    International audienceA detrimental perceptive consequence of damaged auditory sen-sory hair cells consists in a pronounced masking effect exerted by low-frequency sounds, thought to occur when auditory threshold elevation substantially exceeds 40 dB. Here, we identified the submembrane scaffold protein Nherf1 as a hair-bundle component of the differentiating outer hair cells (OHCs). Nherf1 −/− mice dis-played OHC hair-bundle shape anomalies in the mid and basal co-chlea, normally tuned to mid-and high-frequency tones, and mild (22–35 dB) hearing-threshold elevations restricted to midhigh sound frequencies. This mild decrease in hearing sensitivity was, however, discordant with almost nonresponding OHCs at the co-chlear base as assessed by distortion-product otoacoustic emissions and cochlear microphonic potentials. Moreover, unlike wild-type mice, responses of Nherf1 −/− mice to high-frequency (20–40 kHz

    Cochlear outer hair cell horizontal top connectors mediate mature stereocilia bundle mechanics

    No full text
    International audienceOuter hair cell (OHC) stereocilia bundle deflection opens mechanoelectrical transduction channels at the tips of the stereocilia from the middle and short rows, while bundle cohesion is maintained owing to the presence of horizontal top connectors. Here, we used a quantitative noncontact atomic force microscopy method to investigate stereocilia bundle stiffness and damping, when stimulated at acoustic frequencies and nanometer distances from the bundle. Stereocilia bundle mechanics were determined in stereocilin-deficient mice lacking top connectors and with detached tectorial membrane (Strc −/− /Tecta −/− double knockout) and hetero-zygous littermate controls (Strc +/− /Tecta −/−). A substantial decrease in bundle stiffness and damping by ~60 and ~74% on postnatal days P13 to P15 was observed when top connectors were absent. Additionally, we followed bundle mechanics during OHC top connectors development between P9 and P15 and quantified the observed increase in OHC bundle stiffness and damping in Strc +/− /Tecta −/− mice while no significant change was detected in Strc −/− /Tecta −/− animals

    Fdp, a new fibrocyte-derived protein related to MIA/CD-RAP, has an in vitro effect on the early differentiation of the inner ear mesenchyme

    No full text
    International audienceDuring the course of a study aimed at isolating transcripts specifically or preferentially expressed in the inner ear, we identified a novel gene, encoding a fibrocyte-derived protein, that we named Fdp. Fdp is predicted to be a secreted 128-amino acid protein, which is highly homologous to the melanoma-inhibiting activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP), a cartilage-specific protein also expressed in several tumors. Fdp and MIA/CD-RAP thus define a new family of proteins. Fdp is expressed from embryonic day 10.5 in the mesenchyme surrounding the otic epithelium. During development, these cells progressively aggregate, condense, and differentiate into cartilaginous cells forming the otic capsule, which no longer expresses Fdp, and into fibrocytes surrounding the epithelia, which strongly express Fdp. In order to address the function of Fdp, we developed an in vitro antisense oligonucleotide approach using microdissected periotic mesenchyme micromass cultures, and showed that Fdp antisense oligonucleotide treatment results in a significant reduction in chondrogenesis. Our results demonstrate that Fdp plays a role in the initiation of periotic mesenchyme chondrogenesis. Accordingly, Fdp and its human ortholog FDP, which map to chromosome 2 and band 20p11, respectively, could be candidate genes for forms of deafness associated with malformations of the otic capsule

    Otogelin, otogelin-like, and stereocilin form links connecting outer hair cell stereocilia to each other and the tectorial membrane

    No full text
    International audienceThe function of outer hair cells (OHCs), the mechanical actuators of the cochlea, involves the anchoring of their tallest stereocilia in the tectorial membrane (TM), an acellular structure overlying the sensory epithelium. Otogelin and otogelin-like are TM proteins related to secreted epithelial mucins. Defects in either cause the DFNB18B and DFNB84B genetic forms of deafness, respectively, both characterized by congenital mild-to-moderate hearing impairment. We show here that mutant mice lacking otogelin or otogelin-like have a marked OHC dysfunction, with almost no acoustic distortion products despite the persistence of some mechanoelectrical transduction. In both mutants, these cells lack the horizontal top connectors, which are fibrous links joining adjacent stereocilia, and the TM-attachment crowns coupling the tallest stereocilia to the TM. These defects are consistent with the previously unrecognized presence of otogelin and otogelin-like in the OHC hair bundle. The defective hair bundle cohesiveness and the absence of stereociliary imprints in the TM observed in these mice have also been observed in mutant mice lacking stereocilin, a model of the DFNB16 genetic form of deafness, also characterized by congenital mild-to-moderate hearing impairment. We show that the localizations of stereocilin, otogelin, and otogelin-like in the hair bundle are interdependent, indicating that these proteins interact to form the horizontal top connectors and the TM-attachment crowns. We therefore suggest that these 2 OHC-specific structures have shared mechanical properties mediating reaction forces to sound-induced shearing motion and contributing to the coordinated displacement of stereocilia

    Detecting Central Auditory Processing Disorders in Awake Mice

    No full text
    Mice are increasingly used as models of human-acquired neurological or neurodevelopmental conditions, such as autism, schizophrenia, and Alzheimer’s disease. All these conditions involve central auditory processing disorders, which have been little investigated despite their potential for providing interesting insights into the mechanisms behind such disorders. Alterations of the auditory steady-state response to 40 Hz click trains are associated with an imbalance between neuronal excitation and inhibition, a mechanism thought to be common to many neurological disorders. Here, we demonstrate the value of presenting click trains at various rates to mice with chronically implanted pins above the inferior colliculus and the auditory cortex for obtaining easy, reliable, and long-lasting access to subcortical and cortical complex auditory processing in awake mice. Using this protocol on a mutant mouse model of autism with a defect of the Shank3 gene, we show that the neural response is impaired at high click rates (above 60 Hz) and that this impairment is visible subcortically—two results that cannot be obtained with classical protocols for cortical EEG recordings in response to stimulation at 40 Hz. These results demonstrate the value and necessity of a more complete investigation of central auditory processing disorders in mouse models of neurological or neurodevelopmental disorders

    Stereocilin connects outer hair cell stereocilia to one another and to the tectorial membrane.

    No full text
    International audienceStereocilin is defective in a recessive form of deafness, DFNB16. We studied the distribution of stereocilin in the developing and mature mouse inner ear and analyzed the consequences of its absence in stereocilin-null (Strc(-/-)) mice that suffer hearing loss starting at postnatal day 15 (P15) and progressing until P60. Using immunofluorescence and immunogold electron microscopy, stereocilin was detected in association with two cell surface specializations specific to outer hair cells (OHCs) in the mature cochlea: the horizontal top connectors that join the apical regions of adjacent stereocilia within the hair bundle, and the attachment links that attach the tallest stereocilia to the overlying tectorial membrane. Stereocilin was also detected around the kinocilium of vestibular hair cells and immature OHCs. In Strc(-/-) mice the OHC hair bundle was structurally and functionally normal until P9. Top connectors, however, did not form and the cohesiveness of the OHC hair bundle progressively deteriorated from P10. The stereocilia were still interconnected by tip links at P14, but these progressively disappeared from P15. By P60 the stereocilia, still arranged in a V-shaped bundle, were fully disconnected from each other. Stereocilia imprints on the lower surface of the tectorial membrane were also not observed in Strc(-/-) mice, thus indicating that the tips of the tallest stereocilia failed to be embedded in this gel. We conclude that stereocilin is essential to the formation of horizontal top connectors. We propose that these links, which maintain the cohesiveness of the mature OHC hair bundle, are required for tip-link turnover
    corecore