6 research outputs found

    JNK Isoforms Differentially Regulate Neurite Growth and Regeneration in Dopaminergic Neurons In Vitro

    Get PDF
    Parkinson’s disease is characterized by selective and progressive loss of midbrain DAergic neurons (MDN) in the substantia nigra and degeneration of its nigrostriatal projections. Whereas the cellular pathophysiology has been closely linked to an activation of c-Jun N-terminal kinases (JNKs) and c-Jun, the involvement of JNKs in regenerative processes of the nigrostriatal pathway is controversially discussed. In our study, we utilized a mechanical scratch lesion paradigm of midbrain DAergic neurons in vitro and studied regenerative neuritic outgrowth. After a siRNA-mediated knockdown of each of the three JNK isoforms, we found that JNKs differentially regulate neurite regeneration. Knockdown of JNK3 resulted in the most prominent neurite outgrowth impairment. This effect was attenuated again by plasmid overexpression of JNK3. We also evaluated cell survival of the affected neurons at the scratch border. JNK3 was found to be also relevant for survival of MDN which were lesioned by the scratch. Our data suggest that JNK isoforms are involved in differential regulation of cell death and regeneration in MDN depending on their neurite integrity. JNK3 appears to be required for regeneration and survival in the case of an environment permissive for regeneration. Future therapeutic approaches for the DAergic system may thus require isoform specific targeting of these kinases

    Combined inhibition of Cdk5 and ROCK additively increase cell survival, but not the regenerative response in regenerating retinal ganglion cells

    No full text
    CNS regeneration is limited by lesion-induced neuronal apoptosis and an environment inhibiting axonal elongation. Inhibition of ROCK has been previously shown to promote regeneration in retinal ganglion cells (RGC) whereas Cdk5 inhibition mainly promoted survival. Therefore, we have evaluated the effects of combined treatment with inhibitors of ROCK and Cdk5. We show that in vitro, the co-application of the Cdk5 inhibitor, Indolinone A, and the ROCK inhibitor, Y-27632, potentiated the survival-promoting effect of either substance alone. However, neurite outgrowth in vitro was promoted only by the presence of Y-27632, not by Indolinone A alone. In the ex vivo explant and the in vivo optic nerve crush model the combination of both inhibitors significantly increased neurite outgrowth at small distances, but this effect leveled off for longer neurites. In Summary, the combined treatment with the Cdk5 inhibitor Indolinone A and the ROCK inhibitor Y-27632 results in a strong additive effect on neuronal survival, but is not able to increase the regenerative response beyond the effect of the ROCK inhibitor. (C) 2009 Elsevier Inc. All rights reserved
    corecore