81 research outputs found

    Developmental gene regulatory network architecture across 500 million years of echinoderm evolution

    Get PDF
    Evolutionary change in morphological features must depend on architectural reorganization of developmental gene regulatory networks (GRNs), just as true conservation of morphological features must imply retention of ancestral developmental GRN features. Key elements of the provisional GRN for embryonic endomesoderm development in the sea urchin are here compared with those operating in embryos of a distantly related echinoderm, a starfish. These animals diverged from their common ancestor 520-480 million years ago. Their endomesodermal fate maps are similar, except that sea urchins generate a skeletogenic cell lineage that produces a prominent skeleton lacking entirely in starfish larvae. A relevant set of regulatory genes was isolated from the starfish Asterina miniata, their expression patterns determined, and effects on the other genes of perturbing the expression of each were demonstrated. A three-gene feedback loop that is a fundamental feature of the sea urchin GRN for endoderm specification is found in almost identical form in the starfish: a detailed element of GRN architecture has been retained since the Cambrian Period in both echinoderm lineages. The significance of this retention is highlighted by the observation of numerous specific differences in the GRN connections as well. A regulatory gene used to drive skeletogenesis in the sea urchin is used entirely differently in the starfish, where it responds to endomesodermal inputs that do not affect it in the sea urchin embryo. Evolutionary changes in the GRNs since divergence are limited sharply to certain cis-regulatory elements, whereas others have persisted unaltered

    A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos

    Get PDF
    AbstractComparisons of orthologous developmental gene regulatory networks (GRNs) from different organisms explain how transcriptional regulation can, or cannot, change over time to cause morphological evolution and stasis. Here, we examine a subset of the GRN connections in the central vegetal pole mesoderm of the late sea star blastula and compare them to the GRN for the same embryonic territory of sea urchins. In modern sea urchins, this territory gives rise to skeletogenic mesoderm; in sea stars, it develops into other mesodermal derivatives. Orthologs of many transcription factors that function in the sea urchin skeletogenic mesoderm are co-expressed in the sea star vegetal pole, although this territory does not form a larval skeleton. Systematic perturbation of erg, hex, tbr, and tgif gene function was used to construct a snapshot of the sea star mesoderm GRN. A comparison of this network to the sea urchin skeletogenic mesoderm GRN revealed a conserved, recursively wired subcircuit operating in both organisms. We propose that, while these territories have evolved different functions in sea urchins and sea stars, this subcircuit is part of an ancestral GRN governing echinoderm vegetal pole mesoderm development. The positive regulatory feedback between these transcription factors may explain the conservation of this subcircuit

    Uncoupling of complex regulatory patterning during evolution of larval development in echinoderms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conservation of orthologous regulatory gene expression domains, especially along the neuroectodermal anterior-posterior axis, in animals as disparate as flies and vertebrates suggests that common patterning mechanisms have been conserved since the base of Bilateria. The homology of axial patterning is far less clear for the many marine animals that undergo a radical transformation in body plan during metamorphosis. The embryos of these animals are microscopic, feeding within the plankton until they metamorphose into their adult forms.</p> <p>Results</p> <p>We describe here the localization of 14 transcription factors within the ectoderm during early embryogenesis in <it>Patiria miniata</it>, a sea star with an indirectly developing planktonic bipinnaria larva. We find that the animal-vegetal axis of this very simple embryo is surprisingly well patterned. Furthermore, the patterning that we observe throughout the ectoderm generally corresponds to that of "head/anterior brain" patterning known for hemichordates and vertebrates, which share a common ancestor with the sea star. While we suggest here that aspects of head/anterior brain patterning are generally conserved, we show that another suite of genes involved in retinal determination is absent from the ectoderm of these echinoderms and instead operates within the mesoderm.</p> <p>Conclusions</p> <p>Our findings therefore extend, for the first time, evidence of a conserved axial pattering to echinoderm embryos exhibiting maximal indirect development. The dissociation of head/anterior brain patterning from "retinal specification" in echinoderm blastulae might reflect modular changes to a developmental gene regulatory network within the ectoderm that facilitates the evolution of these microscopic larvae.</p

    A nomenclature for echinoderm genes.

    Get PDF
    Echinoderm embryos and larvae are prominent experimental model systems for studying developmental mechanisms. High-quality, assembled, annotated genome sequences are now available for several echinoderm species, including representatives from most classes. The increased availability of these data necessitates the development of a nomenclature that assigns universally interpretable gene symbols to echinoderm genes to facilitate cross-species comparisons of gene functions, both within echinoderms and across other phyla. This paper describes the implementation of an improved set of echinoderm gene nomenclature guidelines that both communicates meaningful orthology information in protein-coding gene symbols and names and establishes continuity with nomenclatures developed for major vertebrate model organisms, including humans. Differences between the echinoderm gene nomenclature guidelines and vertebrate guidelines are examined and explained. This nomenclature incorporates novel solutions to allow for several types of orthologous relationships, including the single echinoderm genes with multiple vertebrate co-orthologs that result from whole-genome-duplication events. The current version of the Echinoderm Gene Nomenclature Guidelines can be found at https://www.echinobase.org/gene/static/geneNomenclature.jsp Database URL https://www.echinobase.org/

    Systematic comparison of sea urchin and sea star developmental gene regulatory networks explains how novelty is incorporated in early development.

    Get PDF
    The extensive array of morphological diversity among animal taxa represents the product of millions of years of evolution. Morphology is the output of development, therefore phenotypic evolution arises from changes to the topology of the gene regulatory networks (GRNs) that control the highly coordinated process of embryogenesis. A particular challenge in understanding the origins of animal diversity lies in determining how GRNs incorporate novelty while preserving the overall stability of the network, and hence, embryonic viability. Here we assemble a comprehensive GRN for endomesoderm specification in the sea star from zygote through gastrulation that corresponds to the GRN for sea urchin development of equivalent territories and stages. Comparison of the GRNs identifies how novelty is incorporated in early development. We show how the GRN is resilient to the introduction of a transcription factor, pmar1, the inclusion of which leads to a switch between two stable modes of Delta-Notch signaling. Signaling pathways can function in multiple modes and we propose that GRN changes that lead to switches between modes may be a common evolutionary mechanism for changes in embryogenesis. Our data additionally proposes a model in which evolutionarily conserved network motifs, or kernels, may function throughout development to stabilize these signaling transitions

    RNA deep sequencing reveals differential MicroRNA expression during development of sea urchin and sea star

    Get PDF
    microRNAs (miRNAs) are small (20-23 nt), non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin) and Patiria miniata (sea star) are excellent model organisms for studying development with well-characterized transcriptional networks. However, to date, nothing is known about the role of miRNAs during development in these organisms, except that the genes that are involved in the miRNA biogenesis pathway are expressed during their developmental stages. In this paper, we used Illumina Genome Analyzer (Illumina, Inc.) to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of sea urchin and sea star (total of 22,670,000 reads). Analysis of these data revealed the miRNA populations in these two species. We found that 47 and 38 known miRNAs are expressed in sea urchin and sea star, respectively, during early development (32 in common). We also found 13 potentially novel miRNAs in the sea urchin embryonic library. miRNA expression is generally conserved between the two species during development, but 7 miRNAs are highly expressed in only one species. We expect that our two datasets will be a valuable resource for everyone working in the field of developmental biology and the regulatory networks that affect it. The computational pipeline to analyze Illumina reads is available at http://www.benoslab.pitt.edu/services.html. © 2011 Kadri et al

    Hemps, a novel EGF-like protein, plays a central role in ascidian metamorphosis

    Get PDF
    All chordates share several characteristic features including a dorsal hollow neural tube, a notochord, a pharynx and an endostyle. Unlike other chordate taxa, ascidians have a biphasic life-history with two distinct body plans. During metamorphosis, the larval nerve cord and notochord degenerate and the pharyngeal gill slits and endostyle form. While ascidians, like other marine invertebrates, metamorphose in response to specific environmental cues, it remains unclear how these cues trigger metamorphosis. We have identified a novel gene (Hemps) which encodes a protein with a putative secretion signal sequence and four epidermal growth factor (EGF)-like repeats which is a key regulator of metamorphosis in the ascidian Herdmania curvata. Expression of Hemps increases markedly when the swimming tadpole larva becomes competent to undergo metamorphosis and then during the first 24 hours of metamorphosis. The Hemps protein is localised to the larval papillae and anterior epidermis of the larva in the region known to be required for metamorphosis. When the larva contacts an inductive cue the protein is released, spreading posteriorly and into the tunic as metamorphosis progresses. Metamorphosis is blocked by incubating larvae in anti-Hemps antibodies prior to the addition of the cue. Addition of recombinant Hemps protein to competent larvae induces metamorphosis in a concentration-dependent manner. A subgroup of genes are specifically induced during this process. These results demonstrate that the Hemps protein is a keg regulator of ascidian metamorphosis and is distinct from previously described inducers of this process in terrestrial arthropods and aquatic vertebrates

    3D genomics across the tree of life reveals condensin II as a determinant of architecture type

    Get PDF
    We investigated genome folding across the eukaryotic tree of life. We find two types of three-dimensional(3D) genome architectures at the chromosome scale. Each type appears and disappears repeatedlyduring eukaryotic evolution. The type of genome architecture that an organism exhibits correlates with theabsence of condensin II subunits. Moreover, condensin II depletion converts the architecture of thehuman genome to a state resembling that seen in organisms such as fungi or mosquitoes. In this state,centromeres cluster together at nucleoli, and heterochromatin domains merge. We propose a physicalmodel in which lengthwise compaction of chromosomes by condensin II during mitosis determineschromosome-scale genome architecture, with effects that are retained during the subsequent interphase.This mechanism likely has been conserved since the last common ancestor of all eukaryotes.C.H. is supported by the Boehringer Ingelheim Fonds; C.H., Á.S.C., and B.D.R. are supported by an ERC CoG (772471, “CohesinLooping”); A.M.O.E. and B.D.R. are supported by the Dutch Research Council (NWO-Echo); and J.A.R. and R.H.M. are supported by the Dutch Cancer Society (KWF). T.v.S. and B.v.S. are supported by NIH Common Fund “4D Nucleome” Program grant U54DK107965. H.T. and E.d.W. are supported by an ERC StG (637597, “HAP-PHEN”). J.A.R., T.v.S., H.T., R.H.M., B.v.S., and E.d.W. are part of the Oncode Institute, which is partly financed by the Dutch Cancer Society. Work at the Center for Theoretical Biological Physics is sponsored by the NSF (grants PHY-2019745 and CHE-1614101) and by the Welch Foundation (grant C-1792). V.G.C. is funded by FAPESP (São Paulo State Research Foundation and Higher Education Personnel) grants 2016/13998-8 and 2017/09662-7. J.N.O. is a CPRIT Scholar in Cancer Research. E.L.A. was supported by an NSF Physics Frontiers Center Award (PHY-2019745), the Welch Foundation (Q-1866), a USDA Agriculture and Food Research Initiative grant (2017-05741), the Behavioral Plasticity Research Institute (NSF DBI-2021795), and an NIH Encyclopedia of DNA Elements Mapping Center Award (UM1HG009375). Hi-C data for the 24 species were created by the DNA Zoo Consortium (www.dnazoo.org). DNA Zoo is supported by Illumina, Inc.; IBM; and the Pawsey Supercomputing Center. P.K. is supported by the University of Western Australia. L.L.M. was supported by NIH (1R01NS114491) and NSF awards (1557923, 1548121, and 1645219) and the Human Frontiers Science Program (RGP0060/2017). The draft A. californica project was supported by NHGRI. J.L.G.-S. received funding from the ERC (grant agreement no. 740041), the Spanish Ministerio de Economía y Competitividad (grant no. BFU2016-74961-P), and the institutional grant Unidad de Excelencia María de Maeztu (MDM-2016-0687). R.D.K. is supported by NIH grant RO1DK121366. V.H. is supported by NIH grant NIH1P41HD071837. K.M. is supported by a MEXT grant (20H05936). M.C.W. is supported by the NIH grants R01AG045183, R01AT009050, R01AG062257, and DP1DK113644 and by the Welch Foundation. E.F. was supported by NHGR
    corecore