10 research outputs found

    Identification of antisense nucleic acid hybridization sites in mRNA molecules with self-quenching fluorescent reporter molecules

    Get PDF
    We describe a physical mRNA mapping strategy employing fluorescent self-quenching reporter molecules (SQRMs) that facilitates the identification of mRNA sequence accessible for hybridization with antisense nucleic acids in vitro and in vivo, real time. SQRMs are 20–30 base oligodeoxynucleotides with 5–6 bp complementary ends to which a 5β€² fluorophore and 3β€² quenching group are attached. Alone, the SQRM complementary ends form a stem that holds the fluorophore and quencher in contact. When the SQRM forms base pairs with its target, the structure separates the fluorophore from the quencher. This event can be reported by fluorescence emission when the fluorophore is excited. The stem–loop of the SQRM suggests that SQRM be made to target natural stem–loop structures formed during mRNA synthesis. The general utility of this method is demonstrated by SQRM identification of targetable sequence within c-myb and bcl-6 mRNA. Corresponding antisense oligonucleotides reduce these gene products in cells

    BRAF V600E Mutations Are Common in Pleomorphic Xanthoastrocytoma: Diagnostic and Therapeutic Implications

    Get PDF
    Pleomorphic xanthoastrocytoma (PXA) is low-grade glial neoplasm principally affecting children and young adults. Approximately 40% of PXA are reported to recur within 10 years of primary resection. Upon recurrence, patients receive radiation therapy and conventional chemotherapeutics designed for high-grade gliomas. Genetic changes that can be targeted by selective therapeutics have not been extensively evaluated in PXA and ancillary diagnostic tests to help discriminate PXA from other pleomorphic and often more aggressive astrocytic malignancies are limited. In this study, we apply the SNaPshot multiplexed targeted sequencing platform in the analysis of brain tumors to interrogate 60 genetic loci that are frequently mutated in 15 cancer genes. In our analysis we detect BRAF V600E mutations in 12 of 20 (60%) WHO grade II PXA, in 1 of 6 (17%) PXA with anaplasia and in 1 glioblastoma arising in a PXA. Phospho-ERK was detected in all tumors independent of the BRAF mutation status. BRAF duplication was not detected in any of the PXA cases. BRAF V600E mutations were identified in only 2 of 71 (2.8%) glioblastoma (GBM) analyzed, including 1 of 9 (11.1%) giant cell GBM (gcGBM). The finding that BRAF V600E mutations are common in the majority of PXA has important therapeutic implications and may help in differentiating less aggressive PXAs from lethal gcGBMs and GBMs

    BRAF V600E Mutations Are Common in Pleomorphic Xanthoastrocytoma: Diagnostic and Therapeutic Implications

    Get PDF
    Pleomorphic xanthoastrocytoma (PXA) is low-grade glial neoplasm principally affecting children and young adults. Approximately 40% of PXA are reported to recur within 10 years of primary resection. Upon recurrence, patients receive radiation therapy and conventional chemotherapeutics designed for high-grade gliomas. Genetic changes that can be targeted by selective therapeutics have not been extensively evaluated in PXA and ancillary diagnostic tests to help discriminate PXA from other pleomorphic and often more aggressive astrocytic malignancies are limited. In this study, we apply the SNaPshot multiplexed targeted sequencing platform in the analysis of brain tumors to interrogate 60 genetic loci that are frequently mutated in 15 cancer genes. In our analysis we detect BRAF V600E mutations in 12 of 20 (60%) WHO grade II PXA, in 1 of 6 (17%) PXA with anaplasia and in 1 glioblastoma arising in a PXA. Phospho-ERK was detected in all tumors independent of the BRAF mutation status. BRAF duplication was not detected in any of the PXA cases. BRAF V600E mutations were identified in only 2 of 71 (2.8%) glioblastoma (GBM) analyzed, including 1 of 9 (11.1%) giant cell GBM (gcGBM). The finding that BRAF V600E mutations are common in the majority of PXA has important therapeutic implications and may help in differentiating less aggressive PXAs from lethal gcGBMs and GBMs

    Representative photomicrographs of tumors.

    No full text
    <p>A. H&E-stained section of a pleomorphic xanthoastrocytoma (PXA, BT06) demonstrating fascicular growth pattern and prominent intercellular reticulin deposition (B) corresponding to PXA (m). C. H&E-stained section of PXA (BT21) that demonstrates neither a fascicular growth pattern nor prominent intercellular reticulin deposition (D). E. H&E-stained section of a giant cell glioblastoma (gcGBM) arising from a PXA (BT49) with marked pleomorphism and giant cells and multifocal reticulin deposition (F).</p

    Clinical Data and Summary of Results.

    No full text
    <p>PXA – pleomorphic xanthoastrocytoma; PXA (m) – pleomorphic xanthoastrocytoma with mesenchymal-like growth pattern; aPXA – anaplastic pleomorphic xanthoastrocytoma; NA – Not assessed.</p

    Mutation profiling of pleomorphic xanthoastrocytoma and giant cell glioblastoma arising in a PXA reveals BRAF V600E mutations.

    No full text
    <p>The sections on the left illustrate SNaPshot genotyping and the sections on the right depict Sanger sequencing of <i>BRAF</i> exon 15 for the same samples. The top panel shows genotyping data obtained with normal male genomic DNA (Promega, Madison, WI). The lower panels illustrate BRAF V600E (c.1799T>A) mutation detection (arrows) in tumor DNA derived from formalin-fixed paraffin-embedded specimens of representative examples of: PXA (BT21), anaplastic PXA (BT22) and gcGBM arising in a PXA (BT49). Assays: (1) <i>EGFR</i> 2235_49del R; (2) <i>NRAS</i> 38; (3) <i>BRAF</i> 1799; (4) <i>NRAS</i> 182; (5) <i>PIK3CA</i> 263; (6) <i>TP53</i> 742; (7) <i>CTNNB1</i> 95 and (8) <i>CTNNB1</i> 122.</p

    Mutation analysis of GBM.

    No full text
    <p>SNaPshot clinical genotyping of 62 glioblastoma cases from MGH identified cancer gene mutations that confer a favorable prognosis to the patients (IDH1) or that activate pathways targeted by therapeutic agents under clinical development (BRAF, KRAS and PIK3CA).</p
    corecore