51 research outputs found

    Database Evaluation for Muscle and Nerve Diseases - DEMAND: An academic neuromuscular coding system

    Get PDF
    Background: A database which documents the diagnosis of neuromuscular patients is useful for determining the types of patients referred to academic centers and for identifying participants for clinical trials and other studies. The ICD-9 or ICD-10 numeric systems are insufficiently detailed for this purpose. Objective: To develop a database for neuromuscular diagnoses Methods: We developed a detailed diagnostic coding system for neuromuscular diseases called DEMAND: Database Evaluation for Muscle and Nerve Diseases that has been adopted by neuromuscular clinics at University of Texas Health Science Center San Antonio (UTHSCSA), Ohio State University (OSU), University of Kansas Medical Center (KUMC), and University of Texas Southwestern (UTSW). At the initial visit, patients are assigned a diagnostic code which can be revised later if appropriate. Fields include patient’s name, date of birth, and diagnostic code. The neuromuscular database consisted of 457 codes. Each code has a prefix (MUS or PNS) followed by a three-digit number. Depending on whether muscle or nerve is primarily involved, there are eight broad groups: motor neuron disease (MUS codes 100-139); neuromuscular junction disorders (MUS 200-217); acquired and hereditary myopathies (MUS 300-600s); acquired and hereditary polyneuropathies (PNS 100-400); mononeuropathies (PNS 500s); plexopathies (PNS 600s); radiculopathies (PNS 700s); and mononeuritis multiplex (PNS 800s). Results: During a period of 10 years, 17,163 of patients were entered (1,752 at UTHSCSA, 1,840 at OSU, 3,699 at KUMC, 9,872 at UTSW). The number of patients in several broad categories are: 3,080 motor neuron disease; 1,575 neuromuscular junction disease; 1,851 muscular dystrophies; 633 inflammatory myopathies; 1,090 hereditary neuropathies; 1,001 immune-mediated polyneuropathies; 620 metabolic/toxic polyneuropathies; 535 mononeuropathies; 296 plexopathies; and 769 radiculopathies. Conclusion: A detailed diagnostic neuromuscular database can be utilized at multiple academic centers. The database should be simple without too many fields to complete, to ensure compliance during busy clinic operations. This database has been very useful in identifying groups of patients for retrospective, observational studies and for prospective treatment studies including trials for Amyotrophic Lateral Sclerosis (ALS), Muscular Dystrophies (MD), Myasthenia Gravis (MG), and retrospective studies of Primary Lateral Sclerosis (PLS), chronic inflammatory demyelinating neuropathy (CIDP), etc

    Reductions in External Divalent Cations Evoke Novel Voltage-Gated Currents in Sensory Neurons

    Get PDF
    It has long been recognized that divalent cations modulate cell excitability. Sensory nerve excitability is of critical importance to peripheral diseases associated with pain, sensory dysfunction and evoked reflexes. Thus we have studied the role these cations play on dissociated sensory nerve activity. Withdrawal of both Mg2+ and Ca2+ from external solutions activates over 90% of dissociated mouse sensory neurons. Imaging studies demonstrate a Na+ influx that then causes depolarization-mediated activation of voltage-gated Ca2+ channels (CaV), which allows Ca2+ influx upon divalent re-introduction. Inhibition of CaV (ω-conotoxin, nifedipine) or NaV (tetrodotoxin, lidocaine) fails to reduce the Na+ influx. The Ca2+ influx is inhibited by CaV inhibitors but not by TRPM7 inhibition (spermine) or store-operated channel inhibition (SKF96365). Withdrawal of either Mg2+ or Ca2+ alone fails to evoke cation influxes in vagal sensory neurons. In electrophysiological studies of dissociated mouse vagal sensory neurons, withdrawal of both Mg2+ and Ca2+ from external solutions evokes a large slowly-inactivating voltage-gated current (IDF) that cannot be accounted for by an increased negative surface potential. Withdrawal of Ca2+ alone fails to evoke IDF. Evidence suggests IDF is a non-selective cation current. The IDF is not reduced by inhibition of NaV (lidocaine, riluzole), CaV (cilnidipine, nifedipine), KV (tetraethylammonium, 4-aminopyridine) or TRPM7 channels (spermine). In summary, sensory neurons express a novel voltage-gated cation channel that is inhibited by external Ca2+ (IC50∼0.5 µM) or Mg2+ (IC50∼3 µM). Activation of this putative channel evokes substantial cation fluxes in sensory neurons

    Review: Progress in the management of paraneoplastic neurological disorders

    No full text
    Paraneoplastic neurological disorders (PNDs) are a rare and diverse group of neurological conditions that can involve any part of the nervous system. Diagnosis is facilitated by finding well-recognized autoantibodies directed against neural antigens in the sera and the cerebrospinal fluid. Identifying and eliminating the underlying malignancy is the mainstay of treatment. Immunomodulatory treatment is gaining more acceptance especially, where a malignancy could not be identified, oncology treatment is completed, or along with cancer treatment. Literature review shows only a handful of systematic prospective case series. Multicenter, prospective controlled clinical trials are needed for future therapeutic advances

    Postural Orthostatic Tachycardia Syndrome (POTS): State of the Science and Clinical Care from a 2019 National Institutes of Health Expert Consensus Meeting - Part 1

    No full text
    Postural orthostatic tachycardia syndrome (POTS) is a chronic and often disabling disorder characterized by orthostatic intolerance with excessive heart rate increase without hypotension during upright posture. Patients often experience a constellation of other typical symptoms including fatigue, exercise intolerance and gastrointestinal distress. A typical patient with POTS is a female of child-bearing age, who often first displays symptoms in adolescence. The onset of POTS may be precipitated by immunological stressors such as a viral infection. A variety of pathophysiologies are involved in the abnormal postural tachycardia response; however, the pathophysiology of the syndrome is incompletely understood and undoubtedly multifaceted. Clinicians and researchers focused on POTS convened at the National Institutes of Health in July 2019 to discuss the current state of understanding of the pathophysiology of POTS and to identify priorities for POTS research. This article, the first of two articles summarizing the information discussed at this meeting, summarizes the current understanding of this disorder and best practices for clinical care. The evaluation of a patient with suspected POTS should seek to establish the diagnosis, identify co-morbid conditions, and exclude conditions that could cause or mimic the syndrome. Once diagnosed, management typically begins with patient education and non-pharmacologic treatment options. Various medications are often used to address specific symptoms, but there are currently no FDA-approved medications for the treatment of POTS, and evidence for many of the medications used to treat POTS is not robust

    Postural Orthostatic Tachycardia Syndrome (POTS): Priorities for POTS Care and Research from a 2019 National Institutes of Health Expert Consensus Meeting - Part 2

    No full text
    The National Institutes of Health hosted a workshop in 2019 to build consensus around the current state of understanding of the pathophysiology of postural orthostatic tachycardia syndrome (POTS) and to identify knowledge gaps that must be addressed to enhance clinical care of POTS patients through research. This second (of two) articles summarizes current knowledge gaps, and outlines the clinical and research priorities for POTS. POTS is a complex, multi-system, chronic disorder of the autonomic nervous system characterized by orthostatic intolerance and orthostatic tachycardia without hypotension. Patients often experience a host of other related disabling symptoms. The functional and economic impacts of this disorder are significant. The pathophysiology remains incompletely understood. Beyond the significant gaps in understanding the disorder itself, there is a paucity of evidence to guide treatment which can contribute to suboptimal care for this patient population. The vast majority of physicians have minimal to no familiarity or training in the assessment and management of POTS. Funding for POTS research remains very low relative to the size of the patient population and impact of the syndrome. In addition to efforts to improve awareness and physician education, an investment in research infrastructure including the development of standardized disease-specific evaluation tools and outcome measures is needed to facilitate effective collaborative research. A national POTS research consortium could facilitate well-controlled multidisciplinary clinical research studies and therapeutic trials. These priorities will require a substantial increase in the number of research investigators and the amount of research funding in this area

    Experimental Autoimmune Autonomic Neuropathy

    No full text
    • …
    corecore