891 research outputs found

    Elucidating the Correlation of the Quasar \ion{Fe}{2}/\ion{Mg}{2} Ratio with Redshift

    Full text link
    Interpretation of the \ion{Fe}{2}(UV)/\ion{Mg}{2} emission ratios from quasars has a major cosmological motivation. Both Fe and Mg are produced by short-lived massive stars. In addition, Fe is produced by accreting white dwarf supernovae somewhat after star formation begins. Therefore, we expect that the Fe/Mg ratio will gradually decrease with redshift. We have used data from the Sloan Digital Sky Survey to explore the dependence of the \ion{Fe}{2}(UV)/\ion{Mg}{2} ratio on redshift and on luminosity in the redshift range of 0.75<z<2.200.75< z< 2.20, and we have used predictions from our 830-level model for the \ion{Fe}{2} atom in photoionization calculations to interpret our findings. We have split the quasars into several groups based upon the value of their \ion{Fe}{2}(UV)/\ion{Mg}{2} emission ratios, and then checked to see how the fraction of quasars in each group varies with the increase of redshift. We next examined the luminosity dependence of the \ion{Fe}{2}(UV)/\ion{Mg}{2} ratio, and we found that beyond a threshold of \ion{Fe}{2}(UV)/\ion{Mg}{2} =~ 5, and M2500<−25magM_{2500} < -25\rm mag, the \ion{Fe}{2}(UV)/\ion{Mg}{2} ratio increases with luminosity, as predicted by our model. We interpret our observed variation of the \ion{Fe}{2}(UV)/\ion{Mg}{2} ratio with redshift as a result of the correlation of redshift with luminosity in a magnitude limited quasar sample.Comment: ApJL accepte

    Effective order strong stability preserving Runge–Kutta methods

    Get PDF
    We apply the concept of effective order to strong stability preserving (SSP) explicit Runge–Kutta methods. Relative to classical Runge–Kutta methods, effective order methods are designed to satisfy a relaxed set of order conditions, but yield higher order accuracy when composed with special starting and stopping methods. The relaxed order conditions allow for greater freedom in the design of effective order methods. We show that this allows the construction of four-stage SSP methods with effective order four (such methods cannot have classical order four). However, we also prove that effective order five methods—like classical order five methods—require the use of non-positive weights and so cannot be SSP. By numerical optimization, we construct explicit SSP Runge–Kutta methods up to effective order four and establish the optimality of many of them. Numerical experiments demonstrate the validity of these methods in practice

    Moment Analysis of Magnetic Resonance Signals

    Get PDF
    A relation is given between the moments of a generalized convolution transform of a function, and the moments of the function itself. This relation is applied to the signal obtained with a field‐modulated EPR spectrometer, a consequence being that the integrated intensity of an absorption line may be obtained from first moment measurements at any modulation amplitude, regardless of line shape or various instrumental nonidealities. This result has been verified experimentally to within a few percent with a Varian EPR spectrometer. Extension to measurement of higher moments is discussed

    An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines

    Get PDF
    We present graphically the results of several thousand photoionization calculations of broad emission line clouds in quasars, spanning seven orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density - ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H)=1023cm−2N(H) = 10^{23} cm^{-2}. Results are similarly given for a small subset of emission lines for two other column densities (1022cm−210^{22} cm^{-2} and 1024cm−210^{24} cm^{-2}), five other incident continuum shapes, and a gas metallicity of 5 \Zsun. These graphs should prove useful in the analysis of quasar emission line data and in the detailed modeling of quasar broad emission line regions. The digital results of these emission line grids and many more are available over the Internet.Comment: 16 pages, LaTeX (AASTeX aaspp4.sty); to appear in the 1997 ApJS: full contents of the 9 photoionization grids presented in this paper may be found at http://www.pa.uky.edu/~korista/grids/grids.htm

    Physical Properties and Baryonic Content of Low-Redshift Intergalactic Ly-alpha and O VI Absorption Systems: The PG1116+215 Sight Line

    Full text link
    We present HST and FUSE observations of the intergalactic absorption toward PG1116+215 in the 900-3000 A spectral region. We detect 25 Ly-alpha absorbers at rest-frame equivalent widths W_r > 30 mA, yielding (dN/dz)_Ly-alpha = 154+/-18 over an unblocked redshift path of 0.162. Two additional weak Ly-alpha absorbers with W_r ~ 15-20 mA are also present. Eight of the Ly-alpha absorbers have large line widths (b > 40 km/sec). The detection of narrow OVI in the broad Ly-alpha absorber at z=0.06244 supports the idea that the Ly-alpha profile is thermally broadened in gas with T > 10^5 K. We find dN/dz ~ 50 for broad Ly-alpha absorbers with W_r > 30 mA and b > 40 km/sec. If the broad Ly-alpha lines are dominated by thermal broadening in hot gas, the amount of baryonic material in these absorbers is enormous, perhaps as much as half the baryonic mass in the low-redshift universe. We detect OVI absorption in several of the Ly-alpha clouds along the sight line. Two detections at z=0.13847 and z=0.16548 are confirmed by the presence of other ions at these redshifts, while the detections at z=0.04125, 0.05895, 0.05928, and 0.06244 are based upon the Ly-alpha and OVI detections alone. The information available for 13 low-redshift OVI absorbers with W_r > 50 mA along 5 sight lines yields (dN/dz)_OVI ~ 14 and Omega_b(OVI) > 0.0027/h_75, assuming a metallicity of 0.1 solar and an OVI ionization fraction < 0.2. The properties and prevalence of low-redshift OVI absorbers suggest that they too may be a substantial baryon repository, perhaps containing as much mass as stars and gas inside galaxies. The redshifts of the OVI absorbers are highly correlated with the redshifts of galaxies along the sight line, though few of the absorbers lie closer than 600/h_75 kpc to any single galaxy. [abbreviated]Comment: 99 pages, 30 figures, aastex format, ApJS in pres

    Scattering by Interstellar Dust Grains. II. X-Rays

    Full text link
    Scattering and absorption of X-rays by interstellar dust is calculated for a model consisting of carbonaceous grains and amorphous silicate grains. The calculations employ realistic dielectric functions with structure near X-ray absorption edges, with resulting features in absorption, scattering, and extinction. Differential scattering cross sections are calculated for energies between 0.3 and 10 keV. The median scattering angle is given as a function of energy, and simple but accurate approximations are found for the X-ray scattering properties of the dust mixture, as well as for the angular distribution of the scattered X-ray halo for dust with simple spatial distributions. Observational estimates of the X-ray scattering optical depth are compared to model predictions. Observations of X-ray halos to test interstellar dust grain models are best carried out using extragalactic point sources.Comment: ApJ, accepted. 27 pages, 12 figures. Much of this material was previously presented in astro-ph/0304060v1,v2,v3 but has been separated into the present article following recommendation by the refere

    H-alpha and Free-Free Emission from the WIM

    Full text link
    Recent observations have found the ratio of H-alpha to free-free radio continuum to be surprisingly high in the diffuse ionized ISM (the so-called WIM), corresponding to an electron temperature of only ~3000K. Such low temperatures were unexpected in gas that was presumed to be photoionized. We consider a 3-component model for the observed diffuse emission, consisting of a mix of (1) photoionized gas, (2) gas that is recombining and cooling, and (3) cool H I gas. This model can successfully reproduce the observed intensities of free-free continuum, H-alpha, and collisionally-excited lines such as NII 6583. To reproduce the low observed value of free-free to H-alpha, the PAH abundance in the photoionized regions must be lowered by a factor ~3, and ~20% of the diffuse H-alpha must be reflected from dust grains, as suggested by Wood & Reynolds (1999).Comment: 25 pages, 7 figures, 4 tables, single column, details of the calculation and atomic physics added, accepted by Ap

    Locally Optimally Emitting Clouds and the Origin of Quasar Emission Lines

    Get PDF
    The similarity of quasar line spectra has been taken as an indication that the emission line clouds have preferred parameters, suggesting that the environment is subject to a fine tuning process. We show here that the observed spectrum is a natural consequence of powerful selection effects. We computed a large grid of photoionization models covering the widest possible range of cloud gas density and distance from the central continuum source. For each line only a narrow range of density and distance from the continuum source results in maximum reprocessing efficiency, corresponding to ``locally optimally-emitting clouds'' (LOC). These parameters depend on the ionization and excitation potentials of the line, and its thermalization density. The mean QSO line spectrum can be reproduced by simply adding together the full family of clouds, with an appropriate covering fraction distribution. The observed quasar spectrum is a natural consequence of the ability of various clouds to reprocess the underlying continuum, and can arise in a chaotic environment with no preferred pressure, gas density, or ionization parameter.Comment: 9 pages including 1 ps figure. LaTeX format using aaspp4.st

    TRMM-related research: Tropical rainfall and energy analysis experiment

    Get PDF
    The overall science objective of the participation in TRMM is the determination of daily rainfall and latent heating in the tropical atmosphere using TRMM and complementary spacecraft observations. The major focus these first three years has been to extend, in space and time, the TRMM satellite observations of rainfall. Observations from TRMM active and passive microwave radiometers will provide the fundamental observations for understanding the hydrological cycle of the tropics. Due to the orbit of the TRMM satellite and the extreme variability of convective rain systems, the TRMM observations provide rainfall estimates representative of a one month period. Monthly mean rainfall rates provide valuable information; however, this time scale limitation neglects the great value of the data towards a better understanding of the physics of tropical convection. Many tropical periodicities will not be characterized by these monthly averages, e.g. diurnal cycles, the 4-6 day easterly waves, and the 30 to 60 day cycle. In the spatial domain, due to its orbit, the TRMM satellite will over-fly many convective systems only once. Indeed, some precipitating systems will not be sampled at all. Observations from geostationary satellites can be used to extend the TRMM observations to smaller time and space scales. Although geostationary satellites cannot probe the interiors of precipitating systems, they do observe their life cycles. To acquire information on cloud water content and rain rate, it is proposed to combine geostationary and other satellite observations with the TRMM satellite measurements
    • 

    corecore