8 research outputs found

    Open Surgery for Sportsman’s Hernia a Retrospective Study

    Get PDF
    Sportsman’s hernia is a painful syndrome in the inguinal area occurring in patients who play sports at an amatorial or professional level. Pain arises during sport, and sometimes persists after activity, representing an obstacle to sport resumption. A laparoscopic/endoscopic approach is proposed by many authors for treatment of the inguinal wall defect. Aim of this study is to assess the open technique in terms of safety and effectiveness, in order to obtain the benefit of an open treatment in an outpatient management. From October 2017 to July 2019, 34 patients underwent surgery for groin pain syndrome. All cases exhibited a bulging of the inguinal posterior wall. 14 patients were treated with Lichtenstein technique with transversalis fascia plication and placement of a polypropylene mesh fixed with fibrin glue. In 20 cases, a polypropylene mesh was placed in the preperitoneal space. The procedure was performed in day surgery facilities. Early or late postoperative complications did not occur in both groups. All patients returned to sport, in 32 cases with complete pain relief, whereas 2 patients experienced mild residual pain. The average value of return to sport was 34.11 ± 8.44 days. The average value of return to play was 53.82 ± 11.69 days. With regard to postoperative pain, no substantial differences between the two techniques were detected, and good results in terms of the resumption of sport were ensured in both groups. Surgical treatment for sportsman’s hernia should be considered only after the failure of conservative treatment. The open technique is safe and allows a rapid postoperative recovery

    Ileocecal Fistula Caused by Multiple Foreign Magnetic Bodies Ingestion

    Get PDF
    The incidence of accidental foreign body (FBs) ingestion is 100,000 cases/year in the US, with over than 80% of cases occurring in children below 5 years of age. Although a single FB may pass spontaneously and uneventfully through the digestive tract, the ingestion of multiple magnetics can cause serious morbidity due to proximate attraction through the intestinal wall. Morbidity and mortality depend on a prompt and correct diagnosis which is often difficult and delayed due to the patient's age and because the accidental ingestion may go unnoticed. We report our experience in the treatment of an 11-year-old child who presented to the emergency department with increasing abdominal pain, vomiting, diarrhea, and fever. Surgery evidenced an ileocecal fistula secondary to multiple magnetic FB ingestion with attraction by both sides of the intestinal wall. A 5-centimeter ileal resection was performed, and the cecal fistula was closed with a longitudinal manual suture. The child was discharged at postoperative day 8. After one year, the patient's clinical condition was good

    Assessing future vulnerability and risk of humanitarian crises using climate change and population projections within the INFORM framework

    Get PDF
    INFORM Risk Index is a global indicator-based disaster risk assessment tool that combines hazards, exposure, vulnerability and lack of coping capacity indicators with the purpose to support humanitarian crisis management decisions considering the current climate and population. In this exploratory study, we extend the Index to include future climate change and population projections using RCP 8.5 climate projections of coastal flood, river flood and drought, and SSP3 and SSP5 population projections for the period 2036 to 2065. For the three hazards considered, annually 1.3 billion people (150% increase), 1.8 billion people (249% increase) and 1.5 billion people (197% increase) in the mid-21st century are projected to be exposed under the 2015, SSP3 and SSP5 population estimates, respectively. Drought shows the highest exposure levels followed by river flood and then coastal flood, with some regional differences. The largest exposed population is projected in Asia, while the largest percent changes are projected in Africa and Oceania. Countries with largest current and projected risk including non-climatic factors are generally located in Africa, West and South Asia and Central America. An uncertainty analysis of the extended index shows that it is generally robust and not influenced by the methodological choices. The projected changes in risk and coping capacity (vulnerability) due to climate change are generally greater than those associated with population changes. Countries in Europe, Western and Northern Asia and Africa tend to show higher reduction levels in vulnerability (lack of coping capacity) required to nullify the adverse impacts of the projected amplified hazards and exposure. The required increase in coping capacity (decreased vulnerability) can inform decision-making processes on disaster risk reduction and adaptation options to maintain manageable risk levels at global and national scale. Overall, the extended INFORM Risk Index is a means to integrate Disaster Risk Reduction and Climate Change Adaptation policy agendas to create conditions for greater policy impact, more efficient use of resources and more effective action in protecting life, livelihoods and valuable assets

    Dissemination and implementation of an educational tool for veterans on complementary and alternative medicine: a case study

    Get PDF
    Background Predicting when and where pathogens will emerge is difficult, yet, as shown by the recent Ebola and Zika epidemics, effective and timely responses are key. It is therefore crucial to transition from reactive to proactive responses for these pathogens. To better identify priorities for outbreak mitigation and prevention, we developed a cohesive framework combining disparate methods and data sources, and assessed subnational pandemic potential for four viral haemorrhagic fevers in Africa, Crimean–Congo haemorrhagic fever, Ebola virus disease, Lassa fever, and Marburg virus disease. Methods In this multistage analysis, we quantified three stages underlying the potential of widespread viral haemorrhagic fever epidemics. Environmental suitability maps were used to define stage 1, index-case potential, which assesses populations at risk of infection due to spillover from zoonotic hosts or vectors, identifying where index cases could present. Stage 2, outbreak potential, iterates upon an existing framework, the Index for Risk Management, to measure potential for secondary spread in people within specific communities. For stage 3, epidemic potential, we combined local and international scale connectivity assessments with stage 2 to evaluate possible spread of local outbreaks nationally, regionally, and internationally. Findings We found epidemic potential to vary within Africa, with regions where viral haemorrhagic fever outbreaks have previously occurred (eg, western Africa) and areas currently considered non-endemic (eg, Cameroon and Ethiopia) both ranking highly. Tracking transitions between stages showed how an index case can escalate into a widespread epidemic in the absence of intervention (eg, Nigeria and Guinea). Our analysis showed Chad, Somalia, and South Sudan to be highly susceptible to any outbreak at subnational levels. Interpretation Our analysis provides a unified assessment of potential epidemic trajectories, with the aim of allowing national and international agencies to pre-emptively evaluate needs and target resources. Within each country, our framework identifies at-risk subnational locations in which to improve surveillance, diagnostic capabilities, and health systems in parallel with the design of policies for optimal responses at each stage. In conjunction with pandemic preparedness activities, assessments such as ours can identify regions where needs and provisions do not align, and thus should be targeted for future strengthening and support

    Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis

    Get PDF
    Summary Background: Predicting when and where pathogens will emerge is difficult, yet, as shown by the recent Ebola and Zika epidemics, effective and timely responses are key. It is therefore crucial to transition from reactive to proactive responses for these pathogens. To better identify priorities for outbreak mitigation and prevention, we developed a cohesive framework combining disparate methods and data sources, and assessed subnational pandemic potential for four viral haemorrhagic fevers in Africa, Crimean–Congo haemorrhagic fever, Ebola virus disease, Lassa fever, and Marburg virus disease. Methods: In this multistage analysis, we quantified three stages underlying the potential of widespread viral haemorrhagic fever epidemics. Environmental suitability maps were used to define stage 1, index-case potential, which assesses populations at risk of infection due to spillover from zoonotic hosts or vectors, identifying where index cases could present. Stage 2, outbreak potential, iterates upon an existing framework, the Index for Risk Management, to measure potential for secondary spread in people within specific communities. For stage 3, epidemic potential, we combined local and international scale connectivity assessments with stage 2 to evaluate possible spread of local outbreaks nationally, regionally, and internationally. Findings: We found epidemic potential to vary within Africa, with regions where viral haemorrhagic fever outbreaks have previously occurred (eg, western Africa) and areas currently considered non-endemic (eg, Cameroon and Ethiopia) both ranking highly. Tracking transitions between stages showed how an index case can escalate into a widespread epidemic in the absence of intervention (eg, Nigeria and Guinea). Our analysis showed Chad, Somalia, and South Sudan to be highly susceptible to any outbreak at subnational levels. Interpretation Our analysis provides a unified assessment of potential epidemic trajectories, with the aim of allowing national and international agencies to pre-emptively evaluate needs and target resources. Within each country, our framework identifies at-risk subnational locations in which to improve surveillance, diagnostic capabilities, and health systems in parallel with the design of policies for optimal responses at each stage. In conjunction with pandemic preparedness activities, assessments such as ours can identify regions where needs and provisions do not align, and thus should be targeted for future strengthening and support. Funding Paul G Allen Family Foundation, Bill & Melinda Gates Foundation, Wellcome Trust, UK Department for International Development

    Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis

    No full text
    Background Predicting when and where pathogens will emerge is difficult, yet, as shown by the recent Ebola and Zika epidemics, effective and timely responses are key. It is therefore crucial to transition from reactive to proactive responses for these pathogens. To better identify priorities for outbreak mitigation and prevention, we developed a cohesive framework combining disparate methods and data sources, and assessed subnational pandemic potential for four viral haemorrhagic fevers in Africa, Crimean–Congo haemorrhagic fever, Ebola virus disease, Lassa fever, and Marburg virus disease. Methods In this multistage analysis, we quantified three stages underlying the potential of widespread viral haemorrhagic fever epidemics. Environmental suitability maps were used to define stage 1, index-case potential, which assesses populations at risk of infection due to spillover from zoonotic hosts or vectors, identifying where index cases could present. Stage 2, outbreak potential, iterates upon an existing framework, the Index for Risk Management, to measure potential for secondary spread in people within specific communities. For stage 3, epidemic potential, we combined local and international scale connectivity assessments with stage 2 to evaluate possible spread of local outbreaks nationally, regionally, and internationally. Findings We found epidemic potential to vary within Africa, with regions where viral haemorrhagic fever outbreaks have previously occurred (eg, western Africa) and areas currently considered non-endemic (eg, Cameroon and Ethiopia) both ranking highly. Tracking transitions between stages showed how an index case can escalate into a widespread epidemic in the absence of intervention (eg, Nigeria and Guinea). Our analysis showed Chad, Somalia, and South Sudan to be highly susceptible to any outbreak at subnational levels. Interpretation Our analysis provides a unified assessment of potential epidemic trajectories, with the aim of allowing national and international agencies to pre-emptively evaluate needs and target resources. Within each country, our framework identifies at-risk subnational locations in which to improve surveillance, diagnostic capabilities, and health systems in parallel with the design of policies for optimal responses at each stage. In conjunction with pandemic preparedness activities, assessments such as ours can identify regions where needs and provisions do not align, and thus should be targeted for future strengthening and support

    Local, national and regional viral haemorrhagic fever pandemic potential in Africa

    No full text
    Predicting when and where novel and exotic pathogens will emerge is difficult, yet as recent Ebola and Zika epidemics demonstrate, despite progress in infectious disease interventions, effective and timely responses to emerging pathogens are still vital. In particular, it is critical to transition from relying on reactive responses to proactive management of these pathogens. To improve the identification of priority settings we present a cohesive framework to bring together disparate methodologies and data sources to assess subnational pandemic potential for four viral haemorrhagic fevers in Africa. Methods: We quantify three key stages that underlie the potential of a widespread epidemic. Stage 1 uses environmental factors that drive potential disease transmission and populations to define areas of possible spillover. Stage 2 assesses local outbreak receptivity by aggregating data on population vulnerabilities and infrastructural response capacities to identify areas of outbreak potential. Stage 3 utilises connectivity data to evaluate the potential for outbreak spread at both local and international scales. Findings: Epidemic potential varied within Africa, highlighting not only regions where viral haemorrhagic fever outbreaks have previously occurred (e.g. Western Africa), but also regions that are generally viewed as non-endemic. Differences by stage both across and within countries in Africa, highlighted where differnet preparedness or monitoring activities should be prioritised. Subnational levels of outbreak receptivity pointed to areas of particular vulnerability in much of Middle, Northern, and Eastern Africa. Interpretation: This study provides a unified assessment of potential trajectories of an epidemic, allowing national and international agencies to pre-emptively evaluate needs and target resources prior to any spillover event. Subnational regions can be identified for improving surveillance, diagnostic capabilities and health system strengthening in parallel with designing policies and guidelines for optimal response at each stage. In conjunction with pandemic preparedness activities, assessments such as this can help identify those regions where preparedness needs and provisions do not currently align. Funding: Paul G Allen Family Foundation, Bill & Melinda Gates Foundation, the Wellcome Trust, and the UK Department for International Development.JRC.E.1-Disaster Risk Managemen
    corecore