96 research outputs found

    SURFACE FUNCTIONALIZATION OF 3D GLASS-CERAMIC POROUS SCAFFOLDS FOR ENHANCED MINERALIZATION IN VITRO

    Get PDF
    Bone reconstruction after tissue loosening due to traumatic, pathological or surgical causes is in increasing demand. 3D scaffolds are a widely studied solution for supporting new bone growth. Bioactive glass–ceramic porous materials can offer a three-dimensional structure that is able to chemically bond to bone. The ability to surface modify these devices by grafting biologically active molecules represents a challenge, with the aim of stimulating physiological bone regeneration with both inorganic and organic signals. In this research work glass ceramic scaffolds with very high mechanical properties and moderate bioactivity have been functionalized with the enzyme alkaline phosphatase (ALP). The material surface was activated in order to expose hydroxyl groups. The activated surface was further grafted with ALP both via silanization and also via direct grafting to the surface active hydroxyl groups. Enzymatic activity of grafted samples were measured by means of UV–vis spectroscopy before and after ultrasonic washing in TRIS–HCl buffer solution. In vitro inorganic bioactivity was investigated by soaking the scaffolds after the different steps of functionalization in a simulated body fluid (SBF). SEM observations allowed the monitoring of the scaffold morphology and surface chemical composition after soaking in SBF. The presence of ALP enhanced the in vitro inorganic bioactivity of the tested material

    Surface modification of Ti-6Al-4V alloy for biomineralization and specific biological response: Part II, Alkaline phosphatase grafting

    Get PDF
    Titanium and its alloys are the most widespread materials for the realization of orthopaedic and dental implants due to their good mechanical properties and biocompatibility. Surface functionalization of biomaterials aimed to improve and quicken implant integration and tissue regeneration is an active research field. The opportunity to confer biological activity (ability to directly stimulate cells with proper biological signals) to the Ti6Al4 V alloy, previously modified to be bioactive from the inorganic point of view (apatite precipitation), was explored in this research work. The alkaline phosphatase (ALP) enzyme was grafted to metal surface via tresyl chloride activation, maintaining its activity. A synergistic effect between biological functionalization and inorganic bioactivity was observed

    Bioactive materials: In vitro investigation of different mechanisms of hydroxyapatite precipitation

    Get PDF
    Abstract Bioactive materials, able to induce hydroxyapatite precipitation in contact with body fluids, are of great interest for their bone bonding capacity. . The aim of this paper is to compare bioactive materials with different surface features to verify the mechanisms of action and the relationship with kinetics and type of precipitated hydroxyapatite over time. Four different surface treatments for Ti/Ti6Al4V alloy and a bioactive glass were selected and a different mechanism of bioactivity is supposed for each of them. Apart from the conventional techniques (FESEM, XPS and EDX), less common characterizations (zeta potential measurements on solid surfaces and FTIR chemical imaging) were applied. The results suggest that the OH groups on the surface have several effects: the total number of the OH groups mainly affects hydrophilicity of surfaces, while the isoelectric points, surface charge and ions attraction mainly depend on OH acidic/basic strength. Kinetics of hydroxyapatite precipitation is faster when it involves a mechanism of ion exchange while it is slower when it is due to electrostatic effects . The electrostatic effect cooperates with ion exchange and it speeds up kinetics of hydroxyapatite precipitation. Different bioactive surfaces are able to differently induce precipitation of type A and B of hydroxyapatite, as well as different degrees of crystallinity and carbonation. Statement of significance The bone is made of a ceramic phase (a specific type of hydroxyapatite), a network of collagen fibers and the biological tissue. A strong bond of an orthopedic or dental implant with the bone is achieved by bioactive materials where precipitation and growth of hydroxyapatite occurs on the implant surface starting from the ions in the physiological fluids. Several bioactive materials are already known and used, but their mechanism of action is not completely known and the type of precipitated hydroxyapatite not fully investigated. In this work, bioactive titanium and bioglass surfaces are compared through conventional and innovative methodologies. Different mechanisms of bioactivity are identified, with different kinetics and the materials are able to induce precipitation of different types of hydroxyapatite, with different degree of crystallinity and carbonation

    Surface modification of Ti-6Al-4V alloy for biomineralization and specific biological response: Part I, inorganic modification

    Get PDF
    Titanium and its alloys represent the gold standard for orthopaedic and dental prosthetic devices, because of their good mechanical properties and biocompatibility. Recent research has been focused on surface treatments designed to promote their rapid osteointegration also in case of poor bone quality. A new surface treatment has been investigated in this research work, in order to improve tissue integration of titanium based implants. The surface treatment is able to induce a bioactive behaviour, without the introduction of a coating, and preserving mechanical properties of Ti6Al4V substrates (fatigue resistance). The application of the proposed technique results in a complex surface topography, characterized by the combination of a micro-roughness and a nanotexture, which can be coupled with the conventional macroroughness induced by blasting. Modified metallic surfaces are rich in hydroxyls groups: this feature is extremely important for inorganic bioactivity (in vitro and in vivo apatite precipitation) and also for further functionalization procedures (grafting of biomolecules). Modified Ti6Al4V induced hydroxyapatite precipitation after 15 days soaking in simulated body fluid (SBF). The process was optimised in order to not induce cracks or damages on the surface. The surface oxide layer presents high scratch resistance

    Silver nanocluster/silica composite coatings obtained by sputtering for antibacterial applications

    Get PDF
    Silver nanocluster silica composite coatings were deposited by radio frequency co-sputtering technique on several substrates. This versatile method allows tailoring of silver content and antibacterial behaviour of coatings deposited on glasses, ceramics, metals and polymers for several applications. Coating morphology and composition as well as nanocluster size were analyzed by means of UV-Visible absorption, X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), electron dispersive spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscopy (AFM). The antibacterial effect was verified through the inhibition halo test against standard bacterial strain, Staphylococcus aureus, before and after sterilization process. Tape test demonstrated a good adhesion of the coatings to the substrate
    • …
    corecore