136 research outputs found
Assessing quality of experience of IPTV and video on demand services in real-life environments
The ever growing bandwidth in access networks, in combination with IPTV and video on demand (VoD) offerings, opens up unlimited possibilities to the users. The operators can no longer compete solely on the number of channels or content and increasingly make high definition channels and quality of experience (QoE) a service differentiator. Currently, the most reliable way of assessing and measuring QoE is conducting subjective experiments, where human observers evaluate a series of short video sequences, using one of the international standardized subjective quality assessment methodologies. Unfortunately, since these subjective experiments need to be conducted in controlled environments and pose limitations on the sequences and overall experiment duration they cannot be used for real-life QoE assessment of IPTV and VoD services. In this article, we propose a novel subjective quality assessment methodology based on full-length movies. Our methodology enables audiovisual quality assessment in the same environments and under the same conditions users typically watch television. Using our new methodology we conducted subjective experiments and compared the outcome with the results from a subjective test conducted using a standardized method. Our findings indicate significant differences in terms of impairment visibility and tolerance and highlight the importance of real-life QoE assessment
Prediction of impending type 1 diabetes through automated dual-label measurement of proinsulin:C-peptide ratio
Background : The hyperglycemic clamp test, the gold standard of beta cell function, predicts impending type 1 diabetes in islet autoantibody-positive individuals, but the latter may benefit from less invasive function tests such as the proinsulin: C-peptide ratio (PI:C). The present study aims to optimize precision of PI:C measurements by automating a dual-label trefoil-type time-resolved fluorescence immunoassay (TT-TRFIA), and to compare its diagnostic performance for predicting type 1 diabetes with that of clamp-derived C-peptide release.
Methods : Between-day imprecision (n = 20) and split-sample analysis (n = 95) were used to compare TT-TRFIA (Auto Delfia, Perkin-Elmer) with separate methods for proinsulin (in-house TRFIA) and C-peptide (Elecsys, Roche). High-risk multiple autoantibody-positive firstdegree relatives (n = 49; age 5-39) were tested for fasting PI:C, HOMA2-IR and hyperglycemic clamp and followed for 20-57 months (interquartile range).
Results : TT-TRFIA values for proinsulin, C-peptide and PI:C correlated significantly (r(2) = 0.96-0.99; P<0.001) with results obtained with separate methods. TT-TRFIA achieved better between-day % CV for PI:C at three different levels (4.5-7.1 vs 6.7-9.5 for separate methods). In high-risk relatives fasting PI:C was significantly and inversely correlated ( r(s) = -0.596; P<0.001) with first-phase C-peptide release during clamp ( also with second phase release, only available for age 12-39 years; n = 31), but only after normalization for HOMA2-IR. In ROC- and Cox regression analysis, HOMA2-IR-corrected PI:C predicted 2-year progression to diabetes equally well as clamp-derived C-peptide release.
Conclusions : The reproducibility of PI:C benefits from the automated simultaneous determination of both hormones. HOMA2-IR-corrected PI:C may serve as a minimally invasive alternative to the more tedious hyperglycemic clamp test
eLabEL: Technology-supported living labs in primary care
Telecare technologies and eHealth applications can support patients and care professionals. However, these technologies are currently not being implemented in primary care. The eLabEL project aims to contribute to a solution for this problem by establishing Living Labs in which patients, healthcare professionals, entrepreneurs and researchers collaborate during the selection, integration, implementation and evaluation of such technologies in primary care. So far, seven primary care centers across the Netherlands have been included. Needs and requirements of healthcare professionals and patients regarding telecare technologies and eHealth applications were studied using semi-structured interviews and focus group interviews respectively. Healthcare professionals and patients were positive towards the use of technologies that can improve accessibility of care for the entire patient population and also expressed a need for technologies that can support self-management in patients with chronic conditions. Requirements voiced by care professionals were the need for clear organization of the user-interface, availability of workflow directives for eHealth usage, minimal steps to perform a task, and integration with their current information system. Patients indicated that care technology should be easy to use and easy to learn, should provide real-time feedback based on self-measured data, and should improve communication between patients and healthcare professionals. Entrepreneurs from the eLabEL consortium will integrate their eHealth and telecare services to meet the requirements of the end-users. The large scale implementation of these technologies will be monitored and the impact on experiences of patients, professionals and organization of care will be studied during a two-year follow-up study. Stakeholders of the eLabEL consortium will join forces to advance the large scale implementation of telecare technologies and eHealth applications in primary care
Plan for development of case studies - Deliverable Report AD 15.1 WP 15 - Mixtures, HBM and human health risk
This deliverable describes the activities in task 15.3 leading up to the development of cases
studies for mixture health effects and outlines the proposed case studies. The proposed case
studies are:
· Developmental neurotoxicity beyond polybrominated diphenylethers
· Heavy metals and nephrotoxicity
· Anti-androgenic chemicals and male reproductive health
· Chromium (VI), nickel and polycyclic aromatic hydrocarbons and lung cancer
· Addressing exposure misclassification in mixture studies
The Addendum provides further details about multi-year perspective and timing, as well as detailed
budgetary aspects per case study.HBM4EU- Grant agreement 733032 HORIZON2020 Programmeinfo:eu-repo/semantics/publishedVersio
Array-Based DNA Methylation Profiling for Breast Cancer Subtype Discrimination
BACKGROUND: Abnormal DNA methylation is well established for breast cancer and contributes to its progression by silencing tumor suppressor genes. DNA methylation profiling platforms might provide an alternative approach to expression microarrays for accurate breast tumor subtyping. We sought to determine whether the distinction of the inflammatory breast cancer (IBC) phenotype from the non-IBC phenotype by transcriptomics could be sustained by methylomics. METHODOLOGY/PRINCIPAL FINDINGS: We performed methylation profiling on a cohort of IBC (N = 19) and non-IBC (N = 43) samples using the Illumina Infinium Methylation Assay. These results were correlated with gene expression profiles. Methylation values allowed separation of breast tumor samples into high and low methylation groups. This separation was significantly related to DNMT3B mRNA levels. The high methylation group was enriched for breast tumor samples from patients with distant metastasis and poor prognosis, as predicted by the 70-gene prognostic signature. Furthermore, this tumor group tended to be enriched for IBC samples (54% vs. 24%) and samples with a high genomic grade index (67% vs. 38%). A set of 16 CpG loci (14 genes) correctly classified 97% of samples into the low or high methylation group. Differentially methylated genes appeared to be mainly related to focal adhesion, cytokine-cytokine receptor interactions, Wnt signaling pathway, chemokine signaling pathways and metabolic processes. Comparison of IBC with non-IBC led to the identification of only four differentially methylated genes (TJP3, MOGAT2, NTSR2 and AGT). A significant correlation between methylation values and gene expression was shown for 4,981 of 6,605 (75%) genes. CONCLUSIONS/SIGNIFICANCE: A subset of clinical samples of breast cancer was characterized by high methylation levels, which coincided with increased DNMT3B expression. Furthermore, an association was observed with molecular signatures indicative of poor patient prognosis. The results of the current study also suggest that aberrant DNA methylation is not the main force driving the molecular biology of IBC
Current Smoking is Associated with Decreased Expression of miR-335-5p in Parenchymal Lung Fibroblasts
Cigarette smoking causes lung inflammation and tissue damage. Lung fibroblasts play a major role in tissue repair. Previous studies have reported smoking-associated changes in fibroblast responses and methylation patterns. Our aim was to identify the effect of current smoking on miRNA expression in primary lung fibroblasts. Small RNA sequencing was performed on lung fibroblasts from nine current and six ex-smokers with normal lung function. MiR-335-5p and miR-335-3p were significantly downregulated in lung fibroblasts from current compared to ex-smokers (false discovery rate (FDR) <0.05). Differential miR-335-5p expression was validated with RT-qPCR (p-value = 0.01). The results were validated in lung tissue from current and ex-smokers and in bronchial biopsies from non-diseased smokers and never-smokers (p-value <0.05). The methylation pattern of the miR-335 host gene, determined by methylation-specific qPCR, did not differ between current and ex-smokers. To obtain insights into the genes regulated by miR-335-5p in fibroblasts, we overlapped all proven miR-335-5p targets with our previously published miRNA targetome data in lung fibroblasts. This revealed Rb1, CARF, and SGK3 as likely targets of miR-335-5p in lung fibroblasts. Our study indicates that miR-335-5p downregulation due to current smoking may affect its function in lung fibroblasts by targeting Rb1, CARF and SGK3
Identification of asthma associated microRNAs in bronchial biopsies
Background Changes in microRNA (miRNA) expression can contribute to the pathogenesis of many diseases, including asthma. We aimed to identify miRNAs that are differentially expressed between asthma patients and healthy controls, and explore their association with clinical and inflammatory parameters of asthma.
Methods Differentially expressed miRNAs were determined by small RNA sequencing on bronchial biopsies of 79 asthma patients and 82 healthy controls using linear regression models. Differentially expressed miRNAs were associated with clinical and inflammatory asthma features. Potential miRNA-mRNA interactions were analysed using mRNA data available from the same bronchial biopsies, and enrichment of pathways was identified with Enrichr and g:Profiler.
Results In total, 78 differentially expressed miRNAs were identified in bronchial biopsies of asthma patients compared with controls, of which 60 remained differentially expressed after controlling for smoking and inhaled corticosteroid treatment. We identified several asthma-associated miRNAs, including miR-125b-5p and miR-223-3p, based on a significant association with multiple clinical and inflammatory asthma features and their negative correlation with genes associated with the presence of asthma. The most enriched biological pathway(s) affected by miR-125b-5p and miR-223-3p were inflammatory response and cilium assembly/organisation. Of interest, we identified that lower expression of miR-26a-5p was linked to more severe eosinophilic inflammation as measured in blood, sputum as well as bronchial biopsies.
Conclusion Collectively, we identified miR-125b-5p, miR-223-3p and miR-26a-5p as potential regulators that could contribute to the pathogenesis of asthma
- …