15,390 research outputs found

    How an online questionnaire can explore leadership teaching in an undergraduate curriculum.

    Get PDF
    OBJECTIVES: To design a tool to explore current leadership teaching in an undergraduate curriculum, using the medical leadership competency framework (MLCF) DESIGN: An online questionnaire was designed based on the MLCF competences and sent to all course leads at Imperial College, London in Autumn 2011 SETTING: Imperial College, London PARTICIPANTS: Sixty-nine course leads were invited to participate in the questionnaire study MAIN OUTCOME MEASURES: Course leads were asked whether they teach each MLCF competence, which teaching methods they use, and how long they spend teaching each competency RESULTS: Overall there was a 78% questionnaire response rate (54/69). From the questionnaires received it was possible to extrapolate results across the remaining courses to achieve a 100% response rate. We were then able to produce a map of current leadership teaching showing that all MLCF competences are taught to varying degrees across the curriculum. The tool does not however provide information on the quality of teaching provided, or what students learn CONCLUSIONS: There is a strong emphasis on the development of teaching leadership skills to undergraduates in Tomorrow's Doctors 2009 (TD09). It is difficult to know what teaching occurs across the curriculum of a large medical school. The design of a simple, electronic questionnaire will enable medical schools to map their current leadership teaching to the TD09 outcomes. This will help to inform further curriculum development and integration as well as signposting of learning opportunities

    Decays of bottom mesons emitting tensor meson in final state using ISGW II model

    Full text link
    In this paper, we investigate phenomenologically two-body weak decays of the bottom mesons emitting pseudoscalar/vector meson and a tensor meson. Form factors are obtained using the improved ISGW II model. Consequently, branching ratios for the CKM-favored and CKM-suppressed decays are calculated.Comment: 32 pages, to be published in Phys. Rev.

    Temporal evolution of arch filaments as seen in He I 10830 \r{A}

    Full text link
    We study the evolution of an arch filament system (AFS) and of its individual arch filaments to learn about the processes occurring in them. We observed the AFS at the GREGOR solar telescope on Tenerife at high cadence with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) in the He I 10830 \AA\ spectral range. The He I triplet profiles were fitted with analytic functions to infer line-of-sight (LOS) velocities to follow plasma motions within the AFS. We tracked the temporal evolution of an individual arch filament over its entire lifetime, as seen in the He I 10830 \AA\ triplet. The arch filament expanded in height and extended in length from 13" to 21". The lifetime of this arch filament is about 30 min. About 11 min after the arch filament is seen in He I, the loop top starts to rise with an average Doppler velocity of 6 km/s. Only two minutes later, plasma drains down with supersonic velocities towards the footpoints reaching a peak velocity of up to 40 km/s in the chromosphere. The temporal evolution of He I 10830 \AA\ profiles near the leading pore showed almost ubiquitous dual red components of the He I triplet, indicating strong downflows, along with material nearly at rest within the same resolution element during the whole observing time. We followed the arch filament as it carried plasma during its rise from the photosphere to the corona. The material then drained toward the photosphere, reaching supersonic velocities, along the legs of the arch filament. Our observational results support theoretical AFS models and aids in improving future models.Comment: Accepted for publication in Astronomy & Astrophysics, 12 pages, 15 figures, 1 online movi

    Large-Eddy Simulations of Fluid and Magnetohydrodynamic Turbulence Using Renormalized Parameters

    Full text link
    In this paper a procedure for large-eddy simulation (LES) has been devised for fluid and magnetohydrodynamic turbulence in Fourier space using the renormalized parameters. The parameters calculated using field theory have been taken from recent papers by Verma [Phys. Rev. E, 2001; Phys. Plasmas, 2001]. We have carried out LES on 64364^3 grid. These results match quite well with direct numerical simulations of 1283128^3. We show that proper choice of parameter is necessary in LES.Comment: 12 pages, 4 figures: Proper figures inserte

    The BG News January 23, 2009

    Get PDF
    The BGSU campus student newspaper January 23, 2009. Volume 99 - Issue 84https://scholarworks.bgsu.edu/bg-news/9024/thumbnail.jp

    Energy fluxes in helical magnetohydrodynamics and dynamo action

    Full text link
    Renormalized viscosity, renormalized resistivity, and various energy fluxes are calculated for helical magnetohydrodynamics using perturbative field theory. The calculation is to first-order in perturbation. Kinetic and magnetic helicities do not affect the renormalized parameters, but they induce an inverse cascade of magnetic energy. The sources for the the large-scale magnetic field have been shown to be (1) energy flux from large-scale velocity field to large-scale magnetic field arising due to nonhelical interactions, and (2) inverse energy flux of magnetic energy caused by helical interactions. Based on our flux results, a premitive model for galactic dynamo has been constructed. Our calculations yields dynamo time-scale for a typical galaxy to be of the order of 10810^8 years. Our field-theoretic calculations also reveal that the flux of magnetic helicity is backward, consistent with the earlier observations based on absolute equilibrium theory.Comment: REVTEX4; A factor of 2 corrected in helicit

    Ca II 8542 \AA\ brightenings induced by a solar microflare

    Full text link
    We study small-scale brightenings in Ca II 8542 \AA\ line-core images to determine their nature and effect on localized heating and mass transfer in active regions. High-resolution 2D spectroscopic observations of an active region in the Ca II 8542 \AA\ line were acquired with the GFPI attached to the 1.5-meter GREGOR telescope. Inversions of the spectra were carried out using NICOLE. We identified three brightenings of sizes up to 2"x2". We found evidence that the brightenings belonged to the footpoints of a microflare (MF). The properties of the observed brightenings disqualified the scenarios of Ellerman bombs or IRIS bombs. However, this MF shared some common properties with flaring active-region fibrils or flaring arch filaments (FAFs): (1) FAFs and MFs are both apparent in chromospheric and coronal layers according to the AIA channels, and (2) both show flaring arches with lifetimes of about 3.0-3.5 min and lengths of about 20". The inversions revealed heating by 600 K at the footpoint location in the ambient chromosphere during the impulsive phase. Connecting the footpoints, a dark filamentary structure appeared in the Ca II line-core images. Before the start of the MF, the spectra of this structure already indicated average blueshifts, meaning upward motions of the plasma along the LOS. During the impulsive phase, these velocities increased up to -2.2 km/s. Downflows dominated at the footpoints. However, in the upper photosphere, slight upflows occurred during the impulsive phase. Hence, bidirectional flows are present in the footpoints of the MF. Conclusions: We detected Ca II brightenings that coincided with the footpoint location of an MF. The MF event led to a rise of plasma in the upper photosphere, both before and during the impulsive phase. Excess mass, previously raised to at most chromospheric layers, slowly drained downward along arches toward the footpoints of the MF.Comment: Accepted for publication in Astronomy & Astrophysics, 13 pages, 6 figures, 1 online movi
    • …
    corecore