82 research outputs found

    IN SILICO MODELING OF MONOMERIC DEXAMETHASONE-INDUCED RAS-RELATED PROTEIN 1 AND RAS HOMOLOG ENRICHED IN STRIATUM: ROLE OF N TERMINUS AND STRUCTURE‑FUNCTION RELATIONSHIP

    Get PDF
    Objective: Dexamethasone-induced Ras-related protein 1 (Dexras1) and Ras homolog enriched in striatum (RHES) are the two monomeric small G proteins that belong to Ras superfamily. These two proteins show 62% similarity. Both of these proteins are involved in signaling and modulation of several pathophysiological processes. They have unique GTP binding domain and a unique C and N terminus. C terminus is known to interact with several proteins; however, the role of its unique N terminus is still not known. The three-dimensional (3D) structure of these proteins is also not available in any of the databases yet. This present study approaches bioinformatics tools and servers to predict the 3D structure of these two proteins in silico.Methods: In this study, two bioinformatics servers were used, namely Swiss modeling server and Iterative Threading ASSEmbly Refinement (I-TASSER) server.Results: Both servers developed many alignment templates of Dexras1 and RHES. These alignments were used to develop 3D structure using Pymol. These models have different regions of proteins such as N terminus, GTP-binding domains, effector loop, C terminus, and the unique CAAX site. The models deduce that the N-terminals of both Dexras1 and RHES are unique regions that might possible be dangling out of the protein while it gets inserted into the membrane. We hypothesize that this unique N-terminal might have a distinct role in the modulation of N-type calcium channels.Conclusion: All the models generated show predicted 3D structure of Dexras1 and RHES protein. This study of structural prediction will be helpful in knowing the interaction of Dexras1 and RHES and a step forward to target these two proteins as a novel therapeutic drug

    Development and evaluation of floating microspheres of curcumin in alloxan-induced diabetic rats

    Get PDF
    Purpose: To prepare and evaluate floating microspheres of curcumin for prolonged gastric residence and to study their effect on alloxan-induced diabetic rats.Methods: Floating microsphere were prepared by emulsion-solvent diffusion method, using hydroxylpropyl methylcellulose, chitosan and Eudragit S 100 polymer in varying proportions. Ethanol/dichloromethane blend was used as solvent in a ratio of 1:1. The floating microspheres were evaluated for flow properties, particle size, incorporation efficiency, as well as in-vitro floatability and drug release. The anti-diabetic activity of the floating microspheres of batch FM4 was performed on alloxaninduced diabetic rats.Result: The floating microspheres had particle size, buoyancy, drug entrapment efficiency and yield in the ranges of 255.32 - 365.65 μm, 75.58 - 89.59, 72.6 - 83.5, and 60.46 - 80.02 %, respectively. Maximum drug release after 24 h was 82.62 % for formulation FM4 and 73.879, 58.613 and 46.106 % for formulations FM1, FM2, and FM3 respectively. In-vivo data obtained over a 120-h period indicate that curcumin floating microspheres from batch FM4 showed the better glycemic control than control and a commercial brand of the drug.Conclusion: The developed floating curcumin delivery system seems economical and effective in diabetes management in rats, and enhances the bioavailability of the drug.Keywords: Gastro-retentive, Sustained release, Bioavailability, Curcumin, Floating microspheres, Diabete

    Magnetic core-shell nanoparticles for drug delivery by nebulization

    Get PDF
    BACKGROUND: Aerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe(3)O(4) magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated. RESULTS: Average particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 μg/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting. CONCLUSION: We have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has implications for targeted delivery of therapeutics and poorly soluble medicinal compounds via inhalation route

    Activation of stress-related signalling pathway in human cells upon SiO2 nanoparticles exposure as an early indicator of cytotoxicity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nanomaterials such as SiO<sub>2 </sub>nanoparticles (SiO<sub>2</sub>NP) are finding increasing applications in the biomedical and biotechnological fields such as disease diagnostics, imaging, drug delivery, food, cosmetics and biosensors development. Thus, a mechanistic and systematic evaluation of the potential biological and toxic effects of SiO<sub>2</sub>NP becomes crucial in order to assess their complete safe applicability limits.</p> <p>Results</p> <p>In this study, human monocytic leukemia cell line THP-1 and human alveolar epithelial cell line A549 were exposed to a range of amorphous SiO<sub>2</sub>NP of various sizes and concentrations (0.01, 0.1 and 0.5 mg/ml). Key biological indicators of cellular functions including cell population density, cellular morphology, membrane permeability, lysosomal mass/pH and activation of transcription factor-2 (ATF-2) were evaluated utilizing quantitative high content screening (HCS) approach and biochemical techniques. Despite the use of extremely high nanoparticle concentrations, our findings showed a low degree of cytotoxicity within the panel of SiO<sub>2</sub>NP investigated. However, at these concentrations, we observed the onset of stress-related cellular response induced by SiO<sub>2</sub>NP. Interestingly, cells exposed to alumina-coated SiO<sub>2</sub>NP showed low level, and in some cases complete absence, of stress response and this was consistent up to the highest dose of 0.5 mg/ml.</p> <p>Conclusions</p> <p>The present study demonstrates and highlights the importance of subtle biological changes downstream of primary membrane and endocytosis-associated phenomena resulting from high dose SiO<sub>2</sub>NP exposure. Increased activation of transcription factors, such as ATF-2, was quantitatively assessed as a function of i) human cell line specific stress-response, ii) SiO<sub>2</sub>NP size and iii) concentration. Despite the low level of cytotoxicity detected for the amorphous SiO<sub>2</sub>NP investigated, these findings prompt an in-depth focus for future SiO<sub>2</sub>NP-cell/tissue investigations based on the combined analysis of more subtle signalling pathways associated with accumulation mechanisms, which is essential for establishing the bio-safety of existing and new nanomaterials.</p

    The multi-facets of sustainable nanotechnology : lessons from a nanosafety symposium

    Get PDF
    An international symposium for nanosafety was held recently at the Nanyang Technological University in Singapore. Topics relating to understanding nanomaterial properties, tools, and infrastructure required for predicting hazardous outcomes, measuring nanomaterial exposure levels, systems approach for risk assessment and public's perception of nanotechnology were covered. The need for a multidisciplinary approach, across both natural and social sciences, for developing sustainable nanotechnology solutions was heavily emphasized. This commentary highlights the major issues discussed and the commitment of the nanosafety research community in Singapore to contribute collectively to realise the vision of sustainable nanotechnology

    Covalent Cysteine Targeting of Bruton's Tyrosine Kinase (BTK) Family by Withaferin-A Reduces Survival of Glucocorticoid-Resistant Multiple Myeloma MM1 Cells

    Get PDF
    Simple Summary Glucocorticoid therapy resistance in B-cell malignancies is often associated with constitutive activation of tyrosine kinases. Novel anticancer drugs targeting hyperactivated tyrosine kinases, such as Bruton's tyrosine kinase (BTK), have, therefore, gained much interest over the past few decades and have already been approved for clinical use. In this study, we compared the therapeutic efficacy of the phytochemical kinase inhibitor withaferin A with the clinically approved BTK inhibitor ibrutinib to target hyperactivated tyrosine kinase signaling in glucocorticoid-resistant multiple myeloma cells. Our results demonstrate that withaferin A-induced cell death of glucocorticoid-resistant MM1R cells involves covalent cysteine targeting of multiple Hinge-6 domain type tyrosine kinases of the kinase cysteinome classification, including BTK. Multiple myeloma (MM) is a hematological malignancy characterized by plasma cells' uncontrolled growth. The major barrier in treating MM is the occurrence of primary and acquired therapy resistance to anticancer drugs. Often, this therapy resistance is associated with constitutive hyperactivation of tyrosine kinase signaling. Novel covalent kinase inhibitors, such as the clinically approved BTK inhibitor ibrutinib (IBR) and the preclinical phytochemical withaferin A (WA), have, therefore, gained pharmaceutical interest. Remarkably, WA is more effective than IBR in killing BTK-overexpressing glucocorticoid (GC)-resistant MM1R cells. To further characterize the kinase inhibitor profiles of WA and IBR in GC-resistant MM cells, we applied phosphopeptidome- and transcriptome-specific tyrosine kinome profiling. In contrast to IBR, WA was found to reverse BTK overexpression in GC-resistant MM1R cells. Furthermore, WA-induced cell death involves covalent cysteine targeting of Hinge-6 domain type tyrosine kinases of the kinase cysteinome classification, including inhibition of the hyperactivated BTK. Covalent interaction between WA and BTK could further be confirmed by biotin-based affinity purification and confocal microscopy. Similarly, molecular modeling suggests WA preferably targets conserved cysteines in the Hinge-6 region of the kinase cysteinome classification, favoring inhibition of multiple B-cell receptors (BCR) family kinases. Altogether, we show that WA's promiscuous inhibition of multiple BTK family tyrosine kinases represents a highly effective strategy to overcome GC-therapy resistance in MM

    Design and syntheses of highly potent teixobactin analogues against Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE) in vitro and in vivo

    Get PDF
    The cyclic depsipeptide, teixobactin kills a number of Gram positive bacteria including Methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium tuberculosis without detectable resistance. To date, teixobactin is the only molecule in its class which has shown in vivo antibacterial efficacy. There have been no in vivo evaluation studies on teixobactin analogues. In this work, we have designed and synthesized 10 new in vivo ready teixobactin analogues. These analogues showed highly potent antibacterial activity against Staphylococcus aureus, MRSA, and vancomycin-resistant Enterococci (VRE) in vitro. One analogue, D-Arg4-Leu10-teixobactin 2 was found to be non-cytotoxic in vitro and in vivo. Most importantly, in a mice model of S. aureus keratitis, topical instillation of peptide 2 decreased the bacterial bioburden (>99.0% reduction) and corneal edema significantly when compared to untreated cornea. Collectively, our results establish the excellent therapeutic potential of teixobactin analogue in attenuating bacterial infections and the associated severities

    Not just an adhesion molecule : LFA-1 contact tunes the T lymphocyte program

    No full text
    The αLβ2 integrin LFA-1 is known to play a key role in T lymphocyte migration, which is necessary to mount a local immune response, and is also the main driver of autoimmune diseases. This migration-triggering signaling process in T cells is tightly regulated to permit an immune response that is appropriate to the local trigger, as well as to prevent deleterious tissue-damaging bystander effects. Emerging evidence shows that, in addition to prompting a diverse range of downstream signaling cascades, LFA-1 stimulation in T lymphocytes modulates gene-transcription programs, including genetic signatures of TGF-β and Notch pathways, with multifactorial biological outcomes. This review highlights recent findings and discusses molecular mechanisms by which LFA-1 signaling influence T lymphocyte differentiation into the effector subsets Th1, Th17, and induced regulatory T cells. We argue that LFA-1 contact with a cognate ligand, such as ICAM-1, independent of the immune synapse activates a late divergence in T cells’ effector phenotypes, hence fine-tuning their functioning.MOE (Min. of Education, S’pore

    Small G Proteins Dexras1 and RHES and Their Role in Pathophysiological Processes

    No full text
    Dexras1 and RHES, monomeric G proteins, are members of small GTPase family that are involved in modulation of pathophysiological processes. Dexras1 and RHES levels are modulated by hormones and Dexras1 expression undergoes circadian fluctuations. Both these GTPases are capable of modulating calcium ion channels which in turn can potentially modulate neurosecretion/hormonal release. These two GTPases have been reported to prevent the aberrant cell growth and induce apoptosis in cell lines. Present review focuses on role of these two monomeric GTPases and summarizes their role in pathophysiological processes
    corecore