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Abstract: The cyclic depsipeptide, teixobactin kills a number of Gram positive bacteria 

including Methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium 

tuberculosis without detectable resistance. To date, teixobactin is the only molecule in its 

class which has shown in vivo antibacterial efficacy. In this work, we designed and 

synthesized 10 new in vivo ready teixobactin analogues. These analogues showed highly 

potent antibacterial activity against Staphylococcus aureus, MRSA, and vancomycin-

resistant Enterococci (VRE) in vitro. One analogue, D-Arg4-Leu10-teixobactin 2 was found to 

be non-cytotoxic in vitro and in vivo. Moreover, topical instillation of peptide 2 in a mice 

model of S. aureus keratitis decreased the bacterial bioburden (>99.0% reduction) and corneal 

edema significantly when compared to untreated mice cornea. Collectively, our results have 

established the high therapeutic potential of a teixobactin analogue in attenuating bacterial 

infections and associated severities in vivo. 

Introduction  

The increasing bacterial resistance against currently used antibiotics and lack of new 

antibiotics to combat antimicrobial resistance (AMR) are major challenges to global health 

and wealth. These  major challenges are estimated to cause 10 million deaths every year and 

$100 trillion in lost productivity to the global economy by 2050.1 Therefore, there is a 

continual need to develop new antibacterial compounds. The recently discovered natural 

product, teixobactin has shown remarkable activity against a broad range of Gram positive 

bacteria, including resistant bacterial strains such as Methicillin-resistant Staphylococcus 

aureus (MRSA), Enterococcus spp. (vancomycin-resistant enterococci, VRE) and 
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Mycobacterium tuberculosis.2 Teixobactin is a nonribosomal undecapeptide. It contains four 

D amino acids namely N-Me-D-Phe1, D-Gln4, D-allo-Ile5 and D-Thr8 and the rare L-allo-

enduracididine amino acid (Figure 1A, marked in red and blue respectively). Teixobactin kills 

bacteria without detectable resistance and bacteria are less likely to develop resistance 

because it operates by at least two unique modes of action.  Notably, teixobactin binds to the 

highly conserved pyrophosphate motifs of multiple bacterial cell wall substrates such as lipid 

II (precursor of peptidoglycan) and lipid III (precursor of cell wall teichoic acid).2  

 

The total syntheses of teixobactin3-4 and its analogues5-7 and their biological activities have 

been published in the past year. We6 and others5, 7 have reported the synthesis of Arg10-

teixobactin by replacing the synthetically challenging enduracididine amino acid at position 

10 with arginine. We have reported the first structure activity relationships (SAR) of Arg10-

teixobactin and established the importance D amino acids for antibacterial activity.4, 6-8 In 

previous work, we also elucidated the 3D molecular structures of teixobactin analogues. The 

disordered structure of teixobactin analogues was found to be vital for their biological activity, 

D-Gln4 being essential and D-allo-Ile5 being important to maintain the disordered structure. 

However, the replacement of D-Gln4 and D-allo-Ile5  with L counterparts provided a more 

ordered structure of teixobactin.9  

The minimum pharmacophore of teixobactin was reported by Nowick et al.7 A lysine scan of  

Arg10-teixobactin was reported by the Albericio group.8 Replacement of any of the four 

isoleucine residues with lysine led to a complete loss of activity. The replacement of Ser3, 
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Gln4 and Ala9 by lysine was tolerated well and biological activity was maintained. The 

replacement of cationic residues such as arginine or lysine at position 10 with histidine led to 

inferior biological activity.10 
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Figure 1. Teixobactin and its analogues containing cationic and hydrophobic amino acids. Cationic 

analogues A2-4, B5-6, 11, C7, 11, D11-12,  E13  and hydrophobic analogues F14, G14, H14, I14, J14 (D amino acids 

highlighted in red and the position 10 amino acids are highlighted in blue). 

 

The L-allo-enduracididine was reported to be important for high antibacterial potency of 

teixobactin.3 However, it is also a key bottleneck in the production and development of 
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teixobactin analogues due to various synthetic challenges.15 We have reported the design and 

synthesis of potent teixobactin analogues against MRSA through the isosteric replacement of 

L-allo-enduracididine.11 Recently, Brimble and coworkers reported the synthesis of 

teixobactin analogues through replacement of L-allo-enduracididine with amino acid 

isosteres and evaluated biological activity against MRSA and VRE.12   

 

 

To expedite access to highly potent teixobactin analogues, we recently reported a new design 

by replacing the synthetically challenging enduracididine with commercially available 

hydrophobic residues such as leucine and isoleucine.14 Leu10- teixobactin and  Ile10-

teixobactin showed identical activity to teixobactin against MRSA in vitro. However, 

increased hydrophobicity may have an adverse influence on the in vivo capacity to be further 

developed as therapeutic drugs. Teixobactin and key teixobactin analogues and their 

antibacterial activities are summarised in figure 1. 

 

Teixobactin has shown antibacterial efficacy in vivo in three mouse models of infection. 

Although these results are encouraging, a significant amount of work remains in the 

development of teixobactin as a therapeutic antibiotic for human use.15 The translation of 

molecules from a discovery phase to useful therapeutic antibiotics is prone to high failure due 

to numerous challenges, such as balancing high efficacy in vivo against a broad spectrum of 

pathogens with minimal liabilities against human targets and the balancing of hydrophobicity 
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with hydrophilicity to address water solubility issues.16 There is a pressing need for highly 

potent analogues of teixobactin to address common drug development challenges. To date, 

there have been no in vivo evaluation studies of teixobactin analogues.   

 

To address such teixobactin development challenges, we report herein the design and 

synthesis of 10 highly potent teixobactin analogues (Figure 2) and their antibacterial 

evaluations aganist S. aureus, MRSA, VRE  and in vivo evaluation of one analogue in a mice 

model of S. aureus keratitis. This work lays the foundation for the development of in vivo 

ready teixobactin analogues. 
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Figure 2. Structure of teixobactin analogues 1-10. 
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Results and discussion 

Design and synthesis: 

To date, teixobactin is the only molecule in its class which has shown in vivo antibacterial 

efficacy. To realise the therapeutic potential of molecules based on the teixobactin scaffold, 

there is a pressing need for in vivo ready, simplified teixobactin analogues with ease of access 

to address the current challenges associated due to the lengthy and daunting total synthesis of 

teixobactins. 

  

In this work, to address such teixobactin development challenges, we speculated that 

replacement of Ser3, D-Gln4 and Ala9 of Leu10-teixobactin and Ile10-teixobactin with  cationic 

arginine would mimic a suitable balance of hyrophobicity and hydrophilicity similar to 

natural teixobactin. We thus replaced the Ser3, D-Gln4 and Ala9 of Leu10-teixobactin and  Ile10-

teixobactin with arginine in a systematic fashion (1-10, Figure 2). In this way, we realized an 

optimal balance between hyrophobicity and hydrophilicity. Six of these analogues (1-3, 8-10, 

Figure 2) have a hyrophobic-hydrophilic profile (two positive charges at physiological pH) 

similar to natural teixobactin. Three analogues (4-6, Figure 2) feature three positive charges 

and one analogue (7, Figure 2) bears four positive charges. In total, we synthesised 10 new 

and highly potent teixobactin analogues (Figure 2, 1-10) in a similar fashion to our recently 

reported highly efficient strategy (scheme 1 and experimental section).14  
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Scheme 1. Synthesis of D-Arg4-Leu10-teixobactin starting from 2-chlorotritylchloride resin: a. 4 eq. Fmoc-

Ala-OH/8 eq. DIPEA in DCM, 3h.   b. 20% piperidine in DMF followed by 3 eq. AllocHN-D-Thr-OH, 3 eq. 

HATU/6 eq. DIPEA, 1.5h   c. 10 eq. Fmoc-Ile-OH, 10 eq. DIC, 5 mol% DMAP in DCM, 2h followed by 

capping with Ac2O/DIPEA 10% in DMF, 20% piperidine in DMF   d. 4 eq. Fmoc-Leu-OH, 4 eq. HATU/8 

eq. DIPEA in DMF, 1h followed by 20% piperidine in DMF   e. 10 eq. Trt-Cl, 15% Et3N in DCM, 1h.  f. 0.2 

eq. [Pd(PPh3)4]
0 + 24 eq. PhSiH3 in dry DCM, 1 x 20 min, 1 x 45 min.   g. 4 eq. Fmoc/Boc-AA(PG)-OH (AA 

= amino acid, PG = protecting group), 4 eq. DIC/Oxyma (µwave, 10 min) followed by 20% piperidine in 

DMF (3 min, 10 min).   h. TFA:TIS:DCM = 2:5:93, 1h.  i. 1 eq. HATU/10 eq. DIPEA in DMF, 30 min.   j.  

TFA:TIS:H2O = 95:2.5:2.5, 1h. 
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Table 1. List of teixobactin analogues (1-12). MIC: Minimum Inhibitory Concentration. *MRSA ATCC 

33591 used.  

Compound Name MIC* 
(µg/mL)         

1 Arg3-Leu10-
texiobactin 

0.125 

2 D-Arg4-Leu10-
texiobactin 

0.125 

3 Arg9-Leu10-
texiobactin  

0.125 

4 Arg3-D-Arg4-
Leu10-teixobactin  

0.25 

5 Arg3-Arg9-Leu10-
teixobactin  

1 

6 D-Arg4-Arg9-
Leu10-teixobactin  

1 

7 Arg3-D-Arg4-Arg9-
Leu10-teixobactin 

1 

8 Arg3-Ile10-
texiobactin 

0.25 

9 D-Arg4-Ile10-
texiobactin 

0.125 

10 Arg9-Leu10-
texiobactin 

0.25 

11 Leu10-teixobactin 0.25 
12 Teixobactin 0.25 

 

 

In vitro antibacterial studies: 

The antimicrobial potency of teixobactin analogues 1-10 was assessed against MRSA ATCC 

33591. The Leu10-teixobactin and natural teixobactin were included as benchmarks for 

activity. The six analogues 1-3, 8-10 with two cationic charges have hydrophobic-hydrophilic 

balances similar to natural teixobactin (two cationic charges). These analogues showed 

comparable potency (MIC 0.125 - 0.25µg/ ml) to natural teixobactin (MIC 0.25µg/ ml, Table 

1). The three analogues 4-6 each possess three cationic charges. Interestingly, analogue 4 

showed comparable antimicrobial activity (MIC 0.25µg/ ml) to natural teixobactin. However, 

analogues 5 and 6 showed 4 times reduced antibacterial activity (MIC 1µg/ ml) than natural 
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teixobactin or Leu10-teixobactin. The analogue 7 with four cationic charges also showed 

reduced antibacterial activity (MIC 1µg/ ml).  

 

The teixobactin analogues 1-10 were further assessed against a panel of antibiotic-resistant 

and antibiotic susceptible Gram-positive pathogens and comparator antibiotics, daptomycin 

(Figure 3). The MIC results indicate that the synthetic analogues are potent against the various 

strains tested, but their MIC distribution differs significantly. Interestingly, we observed a 

wider distribution of MIC values as the overall net charge of the peptide was increased (Table 

1 and 2). 

 

Notably, the MIC values for Staphylococcus were not altered whereas a significant increase 

in Enterococcus was observed with four cationic charges (7, MIC 2-8µg/ ml). Similar trends 

have been reported for teixobactin analogues, whereby increases in positive charges give 

increases in MICs against Staphylococcus aureus ATCC 29213.13 Herein, for example, Lys3-

D-Lys4-Lys10-teixobactin (four cationic charges, Figure1E) has a reported MIC of 8µg/ ml 

against Staphylococcus aureus ATCC 29213;13 whereas, we observed an MIC of 1µg/ ml (8 

times improvement) for Arg3-D-Arg4-Arg9-Leu10-teixobactin 7 (four cationic charges, 

Figure2) against the same bacterial strain. 

The inclusion of 3 arginines in the above case likely perturbs the amphiphilic character of the 

teixobactin, resulting in a decrease in activity. The six analogues 1-3, 8-10 with two cationic 

charges showed comparable antibacterial potency to Leu10-teixobactin. Importantly, the 
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hydrophobic-hydrophilic balance of these analogues was similar to natural teixobactin (two 

cationic charges). The analogues 4-6 with three cationic charges also showed comparable 

antibacterial potency to Leu10-teixobactin. All synthesized analogues showed good potency 

against a broad panel of bacteria. The nine analogues 1-6, and 8-10 showed drug like profiles 

such as high antibacterial potency with optimal balance of hydrophobicity and hydrophilicity. 

We have further determined the minimum bactericidal concentrations (MBC) of teixobactin 

analogues against S. aureus/MRSA strains (Table S3). Compound 2 displayed highly potent 

bactericidal properties, as its MBC values did not increase above 4 times the MIC against the 

tested strains. Compound 2 was found inactive against Pseudomonas aeruginosa (Gram 

negative bacteria, table S2). In view of narrow MIC distribution values and bactericidal 

properties, we focused our attention on compound 2 and further investigated its biological 

properties.   

 

 

Figure 3 MIC distribution of various analogues of teixobactin (1-10) against 19 different Gram-positive 

pathogens (Table S2). The teixobactin analogues, daptomycin (labelled as D) was used as the comparator 

drug. Note the increase in MIC distribution as the overall net charge on the teixobactin analogues was 

increased. The number in parenthesis indicates the overall net charge of the peptides.  
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Table 2. MIC values of compounds 1-10 against a broad panel of bacteria. Enterococcus faecalis, VRE 1001-

1002, 1004, 1008 are clinical isolates. MRSA 42412, MRSA 21455 and MRSA 1003 are clinical isolates.  

 

 

 

 

 Compound    

No.              

1 2 3 4 5 6 7 8 9 10 11 

 Strain                         

1. Staphylococcus 

saprophyticus 

ATCC BAA 750 

<0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 - 

2. Staphylococcus 

saprophyticus 

ATCC 15305 

<0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 0.25 <0.0625 <0.0625 <0.0625 - 

3. Staphylococcus 

saprophyticus 

ATCC 49453 

<0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 - 

4. Staphylococcus 

saprophyticus 

ATCC 49907 

<0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 - 

5. VRE 1001 0.25 0.5 0.5 1 0.5 1 2 1 0.5 1 - 

6. VRE 1002 0.5 1 1 1 1 1 8 1 1 1 - 

7. VRE 1004 <0.0625 0.25 0.25 0.5 0.5 1 4 1 0.5 1 - 

8. VRE 1008 0.125 0.5 0.25 0.5 0.5 1 8 1 0.5 1 - 

9. VRE ATCC 

700802 
0.5 0.5 0.5 2 1 1 4 1 0.25 1 0.25 

10. VRE ATCC 

29212 
0.5 0.5 1 1 1 1 4 1 0.25 1 0.25 

11. MRSA ATCC 

700699 
0.5 0.25 0.5 0.5 1 1 2 1 0.25 1 0.25 

12. MRSA 42412 <0.0625 0.0313 <0.0625 0.25 0.25 1 2 0.125 <0.0625 0.125 <0.0625 

13. MRSA 21455 0.03125 0.0313 0.25 0.5 1 1 2 0.25 0.03125 0.5 <0.0625 

14. MRSA 1003 <0.0625 0.5 0.25 1 2 0.5 2 0.125 <0.0625 0.5 - 

15. SA29213 0.25 <0.0625 0.5 0.25 1 1 1 0.5 0.0625 1 - 

16. SA4299 0.125 - 0.25 0.25 0.5 0.5 1 0.125 <0.0625 1 - 

17. SE12228 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 - 

18. Bacillus Cereus 

ATCC 11788 
<0.0625 0.5 0.25 1 1 1 1 0.125 <0.0625 0.5 - 

19. Bacillus Subtilis 

ATCC 6633 
<0.0625 0.125 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 <0.0625 0.125 - 

Page 14 of 32

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Resistance studies and time dependent killing of bacteria using teixobactin analogue 2: 

D-Arg4-Leu10-teixobactin (2) was evaluated for single step resistance in S. aureus ATCC 

29213 and MRSA ATCC 33591. We were unable to obtain mutants of S. aureus ATCC 29213 

or MRSA ATCC 33591 resistant to teixobactin analogue 2 (5x, 10x, 20x MIC). The 

calculated frequency of resistance to teixobactin analogue 2 was found to be <10-10 (SI page 

S17) which is comparable to teixobactin.2 A lack of resistance in preliminary studies against 

2 is promising in the development of drug like molecules against resistant bacteria. 

Time-kill kinetics studies of D-Arg4-Leu10-teixobactin 2 against S. aureus ATCC 29213 was 

investigated to ascertain if the chemical modifications retained the bactericidal properties. 

The exposure of bacterial inoculum to 0.5 µg/ml or 1 µg/ml of compound 2 resulted in ≥ 2 

log10 decrease in bacterial viability at 8 h (Figure S24), which is comparable with previous 

reports of teixobactin analogues and teixobactin. 2, 14    

 

In vitro cytotoxicity studies: 

It was important to evaluate the cytotoxicity of compound 2 on mammalian cells prior to in 

vivo studies. We determined the cytotoxicity of 2 in human lung epithelial cell line A549 and 

primary dermal fibroblasts (hDFs). Both of these cell culture models are already established 

for evaluation of cytotoxicity of antimicrobial peptides.17-18 An MTS assay indicated that both 

mammalian cell-types exposed to various concentrations of the peptide retained significant 

metabolic activity (≥ 80% viability, Figure 4 a,b), even at a concentration that was ~900 times 

(250 g/ml) higher than the average MIC (0.27 g/ml) values, indicating excellent cell 
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selectivity of the teixobactin analogues. High content images indicated the absence of any 

cytoskeletal and nuclear disruption upon exposure of both epithelial and fibroblasts cells to 

compound 2 (Figure 4 c,d), establishing its non-cytotoxic properties. The morphology of 

mammalian cells exposed to 2 appeared similar to the untreated cells. However, exposure of 

cells to an antineoplastic agent (nocodazole, used as a control) resulted in substantial loss of 

adhered cells, confirming its cytotoxicity. 

 

 

Figure 4. Cytotoxicity evaluation of 2 in A549 lung epithelial cell line and human primary dermal fibroblasts 

(hDFs). Both A549 cells (a) and hDFs (b) were treated with increasing concentrations of 2 (ranging from 

15.62 μg/ml to 250 μg/ml) for 24 h. The stock solution of 2 (500 μg/ml) was prepared fresh by directly 

dissolving 2 in cell culture medium and used. Cells were treated with dimethyl sulfoxide (DMSO, 0.1% v/v) 
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or nocodazole (5 μg/ml dissolved in DMSO) as controls. At the end of the treatment period, metabolic 

activities of cells were quantified by MTS-based cell viability assay. Data represents mean ± SEM of three 

independent triplicate experiments, *p>0.05. After 24 h treatment with 2, A549 cells (c) and hDFs (d) were 

fixed, fluorescently stained with rhodamine-phalloidin (red), alexa fluor 488 conjugated anti-α-tubulin 

(green) and Hoechst 33342 (blue) and imaged using IN Cell Analyzer 2200 automated microscope. 

Representative images of cells treated with 2 (62.5 μg/ml for 24 h) or nocodazole (10 μg/ml, toxicity control) 

are shown.  

 

 

In vivo toxicity studies: 

We examined the in vivo toxicity of 2 in a rabbit corneal damage model. A 50 µl of 0.3% 

(w/v) solution was applied topically (4 times/day) to the circularly debrided cornea and re-

epithelialization was monitored by fluorescein staining. Vehicle alone served as control. 

Figure 5 shows the decrease in fluorescein staining with time for both control wounds and 

wounds treated with 2. There was no significant difference in wound closure between PBS-

treated wounds or wounds treated with 2 (Figure S25). The lack of any delay in the re-

epithelialization and wound closure for the injured cornea treated with 2 suggests good 

biocompatibility of the peptide. 
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Figure 5. Representative slit lamp fluorescence images showing the time-dependent changes in wound 

closure of the cornea after application of PBS (2 eyes) or 0.3% peptide 2 (4 eyes). The wounded cornea was 

stained fluorescein to observe epithelial defects and imaged by slit lamp biomicroscopy.  

 

In vivo antibacterial efficacy of D-Arg4-Leu10-teixobactin in bacterial keratitis model: 

We examined the in vivo efficacy of peptide 2 in the mice-eye model of S.aureus keratitis. S. 

aureus is one of the major etiological agents for bacterial keratitis and the toxic secretions 

produced by this microorganism have been implicated in corneal melt, leading to significant 

morbidity and vision loss.19-20 Scarified cornea of the mice were infected with S. aureus 

ATCC 29213 inoculum (15 l of 6×106 CFU/ml). At 6 h post infections (p.i.), the infected 

cornea were treated with vehicle (PBS), peptide 2 (0.3% w/v in PBS) and moxifloxacin 

(0.3%). A total of 8 doses were applied and the progression of the infection was monitored 

by slit lamp examination, anterior segment optical coherent tomography (AS-OCT) and 

microbiological enumeration of the bacterial bioburden. Mice cornea treated with PBS had 

severe clinical presentation indicated by chemosis, significant presence of hypopyon like 

materials and corneal infiltrates (Figure 6). 

Day 1 Day 3 Day 5 Day 10
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Figure 6 Slit lamp examination of mice infected with S. aureus ATCC 29213 strains. After scratching the 

corneal epithelium with scalpel blade, the scarified cornea was infected with a bacterial inoculum of 6 x 106 

CFU/ml (15 µl/cornea). At 6 h post infections, the infected cornea were treated with 15 µl of PBS, peptide 2 

(0.3% w/v in PBS) and moxifloxacin (0.3% w/v in PBS). Note the significant presence of corneal haze and 

mucopurulent discharge in PBS treated cornea whereas peptide 2 or moxifloxacin treated cornea remained 

clear and no signs of corneal defects. 

 

Notably, infected cornea treated with peptide 2 or a fluoroquinalone antibiotic, had similar 

clinical appearance presentation, as indicated by lack of any conjunctival chemosis and 

corneal infiltrates. These results indicate that peptide 2 halted the progression of S. aureus 

infections and the activity was comparable to moxifloxacin. To determine the effect of 

treatments on tissue severity, we determined the corneal thickness from various groups 

(Figure 7a, Figure S26). The baseline corneal thickness of mice (93.8±2.9 m) decreased 

moderately (79.0±3.4 m) after de-epithelialization followed by S. aureus infection (6h p.i.). 

Treatment of the infected cornea with vehicle alone (PBS) resulted in substantial increase in 

corneal thickness after 24 h (151.7±12.7 m) and 48 h (186.2±17.5 m), indicating corneal 

edema after infection. Infected cornea treated with peptide 2 had a mean corneal thickness of 

Baseline 6h p.i. 24 h p.t 48 h p.t.
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92.3±12.5 m and 121.7±3.2 m after 24 h and 48 h post treatment (p.t.), respectively. For 

the moxifloxacin-treated cornea the mean corneal thickness was 124.2±9.4 m after 24 h p.t. 

and 140.3±10.3 m after 48 h p.t. These results suggested that peptide 2 treatment resulted in 

significant decrease in corneal edema after S. aureus infections when compared PBS treated 

or moxifloxacin-treated groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. a) Changes in corneal thickness (CT) of mice before and after infections and treatment with various 

groups. Note that the CT values for peptide 2 treated cornea approached the baseline values after 48 h p.t., 

which was absent in the case of PBS-/Moxifloxacin-treated corneas. Note that a significant decrease in 

corneal edema was observed for infected cornea treated with peptide 2 compared to untreated cornea (p, 0.01 

two-way ANOVA) as early after 3 doses which decreased further after 8 doses (p, 0.001). The results 

indicated a marked decrease in the severity (due to infections) after treatment with 2 when compared to 

standard antibiotic treatment. b) Bacterial bioburden in the infected corneal after 48 h treatment with various 

groups. Values represent colony counts from individual cornea and bars represent mean CFU/tissue ± 

standard errors of the mean.  
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Bacterial enumeration of the corneal tissues harvested after 8 dosages confirmed the in vivo 

efficacy of peptide 2 (Figure 7b). All the infected cornea that received PBS treatment 

contained significant presence of bacteria, varying from 4.7×105 – 1.3×107 CFU/tissue. The 

mean log10 CFU/tissue ± standard error of the mean for PBS treated cornea was 6.51±0.27. 

Five out of six cornea treated with peptide 2 had detectable bacterial colonies. The mean log10 

CFU/tissue for peptide 2 treated cornea was 3.97±0.19. Four infected corneas treated with 

moxifloxacin contained detectable bacterial colonies with a mean log10 CFU/tissue of 

3.7±0.24 was observed. These results confirmed that peptide 2 had a similar antibacterial 

effect as an established antibiotic in decreasing the bacterial bioburden, thus demonstrating 

its potential as a safe therapeutic for topical applications. 

 

Conclusion 

In conclusion, we have designed and synthesized 10 novel analogues of teixobactin through 

the selective replacement of Ser3, D-Gln4 and Ala9 residues by D/L arginines in Leu10-

teixobactin and Ile10-teixobacin. We have successfully achieved a fine balance of 

hyrophobicity and hydrophilicity while maintaining high antibacterial potency both in vitro 

and in vivo. Importantly, most of these teixobactin analogues showed highly potent 

antibacterial activity against S. aureus, MRSA, and VRE comparable to Leu10-teixobactin 

and Ile10-teixobactin. The MIC values on a broad panel of Gram-positive bacteria indicate a 
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direct correlation between overall net charge and a narrow distribution of MIC values; for 

example, a wider distribution of MIC results as the overall net charge of the peptide increases. 

  

The teixobactin-based peptide analogue 2 was found non-cytotoxic both in vitro and in vivo. 

In a mice model of infectious keratitis, the topical instillation of 2 resulted in >99.0% 

reduction in bacterial bioburden and the efficacy was comparable to moxifloxacin. Notably, 

S. aureus is one of the major etiological agents for bacterial keratitis and has been implicated 

in corneal melt, leading to significant morbidity and vision loss15,16. Furthermore in our 

keratitis mice models, the synthetic teixobactin-analogue 2 decreased corneal edema 

(severity) significantly when compared to untreated cornea or moxifloxacin treated cornea. 

To the best of our knowledge, this work is the first in vivo demonstration of the excellent 

therapeutic potential of a teixobactin analogue in attenuating bacterial infections and 

associated severity. We believe this work represents a significant advancement in the 

development of in vivo ready  simplified teixobactin analogues. Thus, the design of safe and 

highly potent synthetic peptide analogues of teixobactin presented here will enable the 

development of new drug like analogues against antibiotic-resistant bacterial strains. The 

findings presented in this work have broad implications and are expected to facilitate the 

development of peptide based therapies to combat the serious global challenges posed by 

AMR.  
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Experimental 

Synthesis of D-Arg4-Leu10-teixobactin (2) 

D-Arg4-Leu10-teixobactin (2) was synthesised as described in scheme 1 using our previously 

reported procedure.14 (step a) Commercially available 2-chlorotrityl chloride resin 

(manufacturer’s loading = 1.2 mmol/g, 170 mg resin) was swelled in DCM in a reactor. To 

this resin was added 4 eq. Fmoc-Ala-OH/8 eq. DIPEA in DCM and the reactor was shaken 

for 3h. The loading determined by UV absorption of the piperidine-dibenzofulvene adduct 

was calculated to be 0.6 mmol/g, (170mg resin, 0.102 mmol). Any unreacted resin was capped 

with MeOH:DIPEA:DCM = 1:2:7 by shaking for 1h. (step b) The Fmoc protecting group was 

deprotected using 20% piperdine in DMF by shaking for 3 min, followed by draining and 

shaking again with 20% piperidine in DMF for 10 min. AllocHN-D-Thr-OH was then coupled 

to the resin by adding 3 eq. of the AA, 3 eq. HATU and 6 eq. DIPEA in DMF and shaking 

for 1.5h at room temperature. (step c) Esterification was performed using 10 eq. of Fmoc-Ile-

OH, 10 eq. DIC and 5 mol% DMAP in DCM and shaking the reaction for 2h. This was 

followed by capping the unreacted alcohol using 10% Ac2O/DIPEA in DMF shaking for 30 

min and Fmoc was removed using protocol described earlier in step (b). (step d) Fmoc-Leu-

OH was coupled using 4 eq. of AA, 4 eq. HATU and 8 eq. DIPEA in DMF and shaking for 

1h followed by Fmoc deprotection using 20% piperidine in DMF as described earlier. (step 

e) The N terminus of Leu was protected using 10 eq. Trt-Cl and 15% Et3N in DCM and 

shaking for 1h. The protection was verified by the Ninhydrin colour test. (step f) The Alloc 

protecting group of D-Thr was removed using 0.2 eq. [Pd(PPh3)]0 and 24 eq. PhSiH3 in dry 
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DCM under argon for 20 min. This procedure was repeated again increasing the time to 45 

min and the resin was washed thoroughly with DCM and DMF to remove any Pd stuck to the 

resin. (step g) All amino acids were coupled using 4 eq. Amino Acid, 4 eq. DIC/Oxyma using 

a microwave peptide synthesizer. Coupling time was 10 min. Deprotection cycles were 

performed as described earlier. (step h) The peptide was cleaved from the resin without 

cleaving off the protecting groups of the amino acid side chains using TFA:TIS:DCM = 

2:5:93 and shaking for 1h. (step i) The solvent was evaporated and the peptide was redissolved 

in DMF to which 1 eq. HATU and 10 eq. DIPEA were added and the reaction was stirred for 

30 min to perform the cyclization. (step j) The side-chain protecting groups were then cleaved 

off using TFA:TIS:H2O = 95:2.5:2.5 by stirring for 1h. The peptide was precipitated using 

cold Et2O (-20°C) and centrifuging at 7000 rpm to obtain a white solid. This solid was further 

purified by RP-HPLC using the protocols described in supporting information SII.  

All teixobactin analogues were synthesised by using the method described above. The overall 

yields after HPLC purifications were typically in the range of 13-22%. All teixobactin 

analogues 1-10 were characterized by HRMS (ESI) in positive mode (see table 3, SII and 

figures S1-S20). Analogue 2 was also characterised by NMR (S IV, table S1, figures S22-

23.). The homogeneity of HPLC purified fractions were analyzed by mass spectroscopy. All 

the teixobactin analogues used were purified to >95% purity as indicated by HPLC. 

 

 

 

Page 24 of 32

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 3: Compound number, name, chemical formula, mass calculated and mass observed for 

teixobactin analogues 1-10.  

Compound  Name  

Chemical 

formula 

Mass 

Calcd 

(Da) 

Mass 

obsd (Da) 

1 Arg3-Leu10-teixobactin C61H104N15O14 1270.7887 1270.7913 

2 D-Arg4-Leu10-teixobactin C59H101N14O14 1229.7622 1229.7650 

3 Arg9-Leu10-teixobactin C61H104N15O15 1286.7836 1286.7843 

4 Arg3-D-Arg4-Leu10-teixobactin C62H108N17O13 1298.8313 1298.8325 

5 Arg3-Arg9-Leu10-teixobactin C64H111N18O14 1355.8527 1355.8606 

6 D-Arg4-Arg9-Leu10-teixobactin C62H108N17O14 1314.8262 1314.8263 

7 

Arg3-D-Arg4-Arg9-Leu10-

teixobactin C65H115N20O13 1383.8952 1383.8943 

8 Arg3-Ile10-teixobactin C61H104N15O14 1270.7887 1270.7896 

9 D-Arg4-Ile10-teixobactin C59H101N14O14 1229.7622 1229.7607 

10 Arg9-Ile10-teixobactin C61H104N15O15 1286.7836 1286.7780 

 

 

 

 

Supporting information 

Supplementary Information (ESI) available: Peptides HPLC, LC-MS analysis, NMR analysis, 

in vitro antibacterial assay (MIC, MBC, time kill kninetics), in vitro cytotoxicity assay, in 

vivo cytotoxicity assay and in vivo antibacterial efficacy.  
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