12,109 research outputs found

    Incompressible Turbulence as Nonlocal Field Theory

    Full text link
    It is well known that incompressible turbulence is nonlocal in real space because sound speed is infinite in incompressible fluids. The equation in Fourier space indicates that it is nonlocal in Fourier space as well. Contrast this with Burgers equation which is local in real space. Note that the sound speed in Burgers equation is zero. In our presentation we will contrast these two equations using nonlocal field theory. Energy spectrum and renormalized parameters will be discussed.Comment: 7 pages; Talk presented in Conference on "Perspectives in Nonlinear Dynamics (PNLD 2004)" held in Chennai, 200

    Field theoretic calculation of scalar turbulence

    Full text link
    The cascade rate of passive scalar and Bachelor's constant in scalar turbulence are calculated using the flux formula. This calculation is done to first order in perturbation series. Batchelor's constant in three dimension is found to be approximately 1.25. In higher dimension, the constant increases as d1/3d^{1/3}.Comment: RevTex4, publ. in Int. J. Mod. Phy. B, v.15, p.3419, 200

    Quantum mechanical study of molecules - Eigenvalues and eigenvectors of real symmetric matrices

    Get PDF
    Computer methods for calculating eigenvalue and eigenvectors of real symmetric matrices arising in problems of molecular quantum mechanic

    Dynamic Response of Forced Convective Heat Transfer from Cylinders to Low Prandtl Number Fluids

    Get PDF
    The present paper can be viewed as an extension of the work of Lim and Sleicher (9). They evaluated the frequency response of the heated element submerged in liquid metal by a perturbation method for Peclet numbers of up to 0.4. Velocity fluctuations were assumed small and second-order perturbations neglected. The Oseen approximation was made to the velocity field. Here the velocity configuration has been approximated to that of potential flow and the convection equation has been solved numerically with the aid of a digital computer. The potential flow approximation, as compared with the Oseen approximation, is reasonable over a larger range of Peclet numbers. Also, our scheme is valid for large amplitudes of fluctuation. The heat response has been studied under sinusoidal variation in the free stream velocity at frequencies ranging from 1 Hz to 100 kHz for Peclet numbers of up to 1.0. The amplitude of fluctuation was 20% of the mean free-stream velocity. The Nusselt number was found to lag behind the velocity variations and the amount of lag increases with frequency and decreases as the Peclet number is increased. The amplitude of fluctuation of Nusselt number is attenuated as the frequency is increased. The attenuation is 10% at a frequency roughly given by: [formula]. Experimental studies to verify the calculated lag and attenuation effects are in progress

    Energy fluxes in helical magnetohydrodynamics and dynamo action

    Full text link
    Renormalized viscosity, renormalized resistivity, and various energy fluxes are calculated for helical magnetohydrodynamics using perturbative field theory. The calculation is to first-order in perturbation. Kinetic and magnetic helicities do not affect the renormalized parameters, but they induce an inverse cascade of magnetic energy. The sources for the the large-scale magnetic field have been shown to be (1) energy flux from large-scale velocity field to large-scale magnetic field arising due to nonhelical interactions, and (2) inverse energy flux of magnetic energy caused by helical interactions. Based on our flux results, a premitive model for galactic dynamo has been constructed. Our calculations yields dynamo time-scale for a typical galaxy to be of the order of 10810^8 years. Our field-theoretic calculations also reveal that the flux of magnetic helicity is backward, consistent with the earlier observations based on absolute equilibrium theory.Comment: REVTEX4; A factor of 2 corrected in helicit

    Interval structure of the Pieri formula for Grothendieck polynomials

    Get PDF
    We give a combinatorial interpretation of a Pieri formula for double Grothendieck polynomials in terms of an interval of the Bruhat order. Another description had been given by Lenart and Postnikov in terms of chain enumerations. We use Lascoux's interpretation of a product of Grothendieck polynomials as a product of two kinds of generators of the 0-Hecke algebra, or sorting operators. In this way we obtain a direct proof of the result of Lenart and Postnikov and then prove that the set of permutations occuring in the result is actually an interval of the Bruhat order.Comment: 27 page

    Large-Eddy Simulations of Fluid and Magnetohydrodynamic Turbulence Using Renormalized Parameters

    Full text link
    In this paper a procedure for large-eddy simulation (LES) has been devised for fluid and magnetohydrodynamic turbulence in Fourier space using the renormalized parameters. The parameters calculated using field theory have been taken from recent papers by Verma [Phys. Rev. E, 2001; Phys. Plasmas, 2001]. We have carried out LES on 64364^3 grid. These results match quite well with direct numerical simulations of 1283128^3. We show that proper choice of parameter is necessary in LES.Comment: 12 pages, 4 figures: Proper figures inserte

    Local shell-to-shell energy transfer via nonlocal Interactions in fluid turbulence

    Full text link
    In this paper we analytically compute the strength of nonlinear interactions in a triad, and the energy exchanges between wavenumber shells in incompressible fluid turbulence. The computation has been done using first-order perturbative field theory. In three dimension, magnitude of triad interactions is large for nonlocal triads, and small for local triads. However, the shell-to-shell energy transfer rate is found to be local and forward. This result is due to the fact that the nonlocal triads occupy much less Fourier space volume than the local ones. The analytical results on three-dimensional shell-to-shell energy transfer match with their numerical counterparts. In two-dimensional turbulence, the energy transfer rates to the near-by shells are forward, but to the distant shells are backward; the cumulative effect is an inverse cascade of energy.Comment: 10 pages, Revtex

    Synthesis and Microstructural Characteristics of Tl-based High Temperature Superconducting Tapes

    Get PDF
    corecore