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QUANTUMMEtiHANICAL STUDY OF MOLFCIZES 

Eigenvalues and Eigenvectors of Real Symmetric Matrices 

by G. R. Vermay C. D. Ia Rudde and R. C. Sahni 

In this report, three general classes of methods for calculating the 

eigenvalues and eigenvectors of real symmetric lnatrices arising in quantum 

mechanical calculation& are described: the Sturm sequence methods, the ortho- 

gonal reduction methods, and the step by step methods. The advantages and 

limitations of each method are pointed out. The report also includes the dis- 

cussion of various methods of reducing real symmetric matrices to more compact 

convenient forms. Methods of reduction to tridiagonal form, and deflation of 

matrices to smaller order are described. 

INTRODUCTION 

This is the first of a series of reports on the present techniques used to 

perform matrix calculations on high speed electronic digital computers. In this 

report the authors confine themselves to a discussion of techniques for calcu- 

lating the eigenvalue and eigenvectors of real symmetric matrices arising in 

problems of molecular quantum mechanics. Subsequent reports will deal with 

other numerical techniques used in solving problems arising in molecular quantum 

mech;znics. 

1. Statement of the Problem 

For a given square nxn mtrix A = (cxij), find numbers (eigenvalues) E 

and non zero column vectors (eigenvectors) X such that 

Ax = ix (1) 

where A is real (all 0.. real) and symmetric (a.. = cr: 
1J =J 

ji for all i, j). We know 

* Presently at the University of Rhode Island, Kingston, Rhode Island 
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by the theory of linear equations there exist don-zero X's satisfying (1) 

only if the determinant of A' (written DET (A')) is zero where A' ha's elements 

a' ij 
= -a ij i # j and "Iii = 8 - olii. DET (A'), as a function of B is an 

nth degree polynomial in E, and is referred to as the characteristic polynomial 

of A. We denote DET (A') by f(a). 

If we let I represent the identity matrix, A -1 , AT represent the inverse 

and transpose of a matrix A respectively, then we May state two eigenvalue 

problems closely related to the one given by equation (1) namely 

and 

Ax = EEK (2) 

ABC = Ex (3) 

where A and B are symmetric matrices and B is, in addition, positive definite 

(all eigenvalues of B are positive). 

If B is symmetric and positive definite, then there is an invertible 

matrix L (L -1 exists) such that LTL = B. By the theory of linear equations the 

E'S of equation (2) must satisfy 

or 

0 = DET (A - EB) (4) 

0 = DET ((LT)-') DET (A - EB) DET (i-l) 

= DET ((LT)-' (A - eB) L-l) (5) 

= DET ((LT)-'AL-l - EI) 

= DET (C - 61) 

where C = (LT)'l AL-' and is also symmetric. Hence the solution of (2) is 

equivalent to the solution of 
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CY = EY (6) 

where the B are the eigenvalues of C and the Y are the corresponding eigenvectors. 

The vectors Y are reIdted to the vectors X of equation (2) as follows: 

x = L-4. (7) 

This can be verified by substitution in equation (2) and multiplication on the 

left by (LT)-l. 

The E: of equaticm (3) must satisfy 

or 

DET (AB - ~1) = 0 (8) 

0 = DET (AB - ~1) DET (B-l) (9) 

= DET (A - ,B-l). 

This is essentially equation (4) and the eigenvalue problem can be put in the 

form 

CY = EY (10) 

where C = LALT and X = LY in equation (3). 

2. Description and Classification of the Methods 

There are three general classes of numerical procedures for solving the 

basic problem stated in equation (1) of section 1. 

ThC first class of methods, referred to as the Sturm sequence methods, 

determines the numbers E by means of a Sturm sequence of polynomials associated 

with the matrix A. Once the B have been determined, the associated vectors X 

can be determined in several straight forward methds which will be described 

later. 

The second class of methods, referred to as the orthogonal reduction methods, 

determines the numbers e and vectors X simultaneously. A sequence of orthogonal 
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matrices U(') is generated, usually as a product of elementary orthogonal 

matrices, such that the ILimIt as k 4 00 of U (k)T Au(1') is a diagonal lnatrix 

(zeros everywhere except possibly on the main diagonal). The numbers on the 

diagonalwillbe the eigenvalues E of A and the corresponding columns of 

u = l&nit of U(k) as K 4 ~1 will be the eigenvectors X. 

The third class of methods, referred to as the step by step methods, deter- 

mines one eigenvalue e and a corresponding eigenvector X, one pair, E and X at a 

time. Once B and X have been determined, it is easy to construct an orthogonal 

matrix V such that 

VTAV 

0 

(l-u 

where Al is a symmetric (n-l) X (n-l) rcatrix. Thus, the problem has been 

essentially reduced by reducing the order of the matrix by one. 

2.1 Two Special Matrices 

We will now define two special orthogonal matrices which will be used in 

a number of algorithms described in this report. 

Let Jij (i < j) be an nxn matrix of the following form 

row i 

J = 
ij 

row j 

co1 i 

/ 
1 

1 
C 

1 

Co1 j 

0 \ 

S 

1 - c 
1 



Ju is the same as the identity matrix except for the lth row-li%olumn, ith 

row'jth column, jth row ith column, jth row jth column where the entries are c, 

s, SY and 4 respectively. If 

C2 2 
+ s =l 03) 

then Jij is both orthogonal and symmetric. We shall call the matrices J 
id 

Jacobi plane rotaticms or Jacobi transfomtions (mtrices). 

Let 

Hi = I - miW; (14) 

be a matrix with WT a row vector having the property that the first i components 

of WF are zeros, namely 

WT i = (0, 0, . . ., 0, wi+l, . . . , WJ. (15) 

If 
WTW ii =l (16) 

then Hi is both orthogonal and symmetric. We shall call the matrices Hi 

Householder Transforms-Lions Matrices. It is easily seen that H, 2 is equal to 

J n 1 n for some suitably chosen c, 8. 
- , 

2.2 Preliminary Reductions 

The solution of the general problem of finding an orthogonal matrix U for 

a given symmetric Ioatrix A such that 3 AU = D where D is a diagonal matrix is 

often facilitated by making some preliminary reductions by orthogonal similarity 

transformations on A. We can, for instance, reduce a symmetric matrix to tri- 

diagonal (Jacobi) form (zeros everywhere except on the three main diagonals) 

by several non-iterative methods, three of which will be described here. If an 

eigenvalue and a corresponding eigenvector of the nxn mtrix is known, we may 

use this information to transform the matrix into a direct sum of a n x P 



1.11.11.11-11.. ------- --.. -.----. .-- - . 

matrix and an (n-l) x (n-l) matrix which essentially reduces the order of the 

matrix to be solved. This process is referred to as deflation. We will describe 

here the reduction to tridiagonal form by the methods of Givens, Householder, and 
w 

Ianczos, and one of the, deflation methods. 

We will first describe Givens, method. Suppose A is a symmetric matrix of 

the form 

A= 

0 

-..c------ 
I 
I 
I 
:B I n-i 
I i I 

where Ai and An i are i x i and (n-i) x (n-i) matrices respectively, Ai is in 

tridiagonal form, and Bn i is an (n-i) dimensional column vector. We wish to 

show how to obtain an orthogonal matrix U such that T?AU = A, where 

(17) 

A’ = (18) 

and A, iy - AA i are i x i and (n-i) x (n-i) matrices where A! is in tridiagonal l- 

form and B; i is an (n-i) dimensional vector having all components except 

possibly the first equal to zero. Then A, will be of the form 
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where A! 1+1, A; i - - 1 are 

A;+l is in tridiagonal 

consider a sequence of 

J(k) 
n-k-l,n-k' J&i;t; . 

Y 

Ato) = 

--I----- 
:B' 
: 

n-i 

: I I 
: I 

(19) 

(i+l) x (itl) and (n-i-l) x (n-i-l) matrices respectively, 

form and B; i - - 1 is an (n-i-l) dimensional vector. We 

(n-i-l) Jacobi transformations - - - - - 

Let 

A 

J;; n Ato) J(l) = p 

- Y n-1,n 

Jri 1 n k 
--Y - 

Jjk-') Jf$ 1 n k = A(') 
--Y - 

A(n-i-l) (20) 

B(")T = BT 
n-i n-i = (MY c12Y “‘Y 01,-i) 

B(“!T = 
(cxy, cg’, . . . . Jk! ) 

Biti-l)T = BAT1 

n-1 

-- _- = (cYp,$ ,..., a;-i,. 

Then we define 

UT (n-i-l) Jt2) (1) 

= Ji+l, I& ---- n-2, n-lJn-1,n l 
(a 

(k) The transformations Jn,k,i 
Y 

n-k will not destroy the tridiagonal form of Ai, 

namely Ai = Ai. The blooks of zeros in the upper right and lower left hand 

corners of A wilLI. be preserved by these transformations. We need only consider 
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04 the effects of these transformations on the vectors Bn i. Let the c, s associated 

with the JFL 1 n k be denoted by c('), s('). If we define 
--I - 

$) 

then (s("))~ t (c(~))~ = 1 and ~~(nkl ktl = p. - - 

If a(nkil,)+, = CXF~'L,, = ..;.. = 'cx(~-') = 0, then - - - - n-i 

??i kt2 - - = . . . . . = a (k) = 0 also. Thus it can be easily seen n-i 

that B; 1 will have all components equal to zero, except possibly the first. 

!l?he Householder reduction to tridiagonal form is as follows. Suppose A 

has the form of equation (17) and let 

A' = Hi AHi. (23) 

We wish to show that for a suitably chosen Wi, A' will be in the form of 

equation (19). Let WT = (o, . . . . 0, w. 1t1, . . . . wn) be defined as follows 

-l/2 /2 
W it1 = p/2 (1 f Igl rf Qk2) T' 

k=l 
(24) 

‘@l(g) al-i/ [nf s> 2 l/2 
"1 = witl y 1 it2 < I < n 

k=l 

It is a matter of straight forward algebra to verify that WT Wi = 1 and that the 

vector B, n i has all components equal to zero except possibly the first. It is 

also easily seen that A; = Ai and that the upper right and lower left hand 
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blocks of zeros in equation (17) are preserved. 

The Ianczos method may be described as follows. Let Xl be any arbitrary 

non-zero vector. We define the following sequence of vectors Xi 

x2 = Ax1 -%X1 

x3 = 5 - c”9, - BlXl (25) 

'i = pxil-ailxil-pi2xi2 - - - - 

where 

a i-l= _ CxT 1 PXi-l)/(XT-l ‘i-1) 

B- l-2 = (XT-1 AXi-2)/(XT-2 ‘i-2) ’ 
(26) 

It can easily be seen that the vectors Xi are orthogonal to each other. We 

distinguish two cases: (1) XT Xj # 0 1s j < i-l and XT Xi = 0 (or Xi = 0) 

for some i, 2 2 i < n or (2) XT Xj # 0 for l( j 5 n. 

Case (1) XT Xj # 0 1 <, j .< i - lj Xi = 0 for some i. Then we have 

Ax 
i-l = o! i-l'i-1 ' Bi-2 'i-2 (27) 

and the space spanned by the orthogonal vectors X 
1' . . . . X i-l is a reducing 

subspaoe for A. We define an IN-I matrix V 

v = (Xl' x2, x3, . . . . X i-l' y; Y l --, y,> (28) 

where the Y. s 
J 

are column vectors so chosen that XT Y = 0 ar-d YT Y 
3 k 

j k = Sjk. 

?V= D (29) 

where D is a diagonal matrix with positive elements on the diagonal. Hence D 

has a real square root Dv2 and D-v2 exists. Then there is a matrix A' 



A’ = (30) 

where Z i-l and Z n-it1 are (i-l) x (i-l) and (n-itl) x (n-itl) matrices 

respectively such that 

AV = VA'. (31) 

Then we may write 

D-1/2 VT AVJd2 = D -1/2 $ VA1 D-1/2 = ,, 1/2 A' ,,-1/2 . (32) 

Now D1i2 A' f112 is of the form of equation (30) and VD 
42 

is an orthogonal 

matrix. Hence we can reduce the problem of calculating eigenvalues and eigen- 

vectors of an nxn matrix to one of calculating eigenvalues and eigenvectors of 

an (i-l) x (i-l) matrix and an (n-itl) x (n-itl) matrix. 

Case (2) Xi Xj # 0 l<jjn. 

If we define Xntl by equations (25) and (26) then Xn+l = 0 because the 

X 
3 

15 j 5 n are non-zero vectors spanning the n dimensional space. We 

define a matrix 

v = 05’ 5, l *-, xn)’ (33) 

Now VTV = D where D is a diagonal matrix with positive-elements on the diagonal. 

Hence D has a real square root D v2 and Dm112 exists, and VDm112 is an ortho- 

gonal matrix. Hence 

AV = -VA' (34) 
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where 

A’ = 

% 

r 

1 

0 

0 
Therefore 

(35) 

0 
Si 

012 k! 

D -1/2 p VA' D-li2 = $d2 A' Dd2 . (36) 

The right hand side of equation (36) is in tridiagonal form, and VD -l/2 is an 

orthogonal matrix which transforms A to tridiagonal form. 

The process of deflating a matrix is one essentially of isolating and 

eliminating from consideration one eigenvalue and a corresponding eigenvector 

from an nxn symmetric matrix A to obtain a matrix A, of the form 

A’ = 

E 

- - 

0 

I 

I 

I 
- - - 

1 (37) 

where e is an eigenvalue of A and An 1 is an (n-l) x (n-l) matrix. Let 6, x 

be an eigenvalue and corresponding eigenvector, such that X?X = 1 and let V 

be an nx(n-1) rectangular matrix such that XTV = 0. Such matrices V can always 

be constructed. Consider the matrix s = (xiv). Then STS = I and 
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which gives us the required reduction. 

m----- (38) 

2.3 Sturm Sequence Method 

This method is based upon the well known theorem that if A is a symmetric 

matrix and Ai is the i x i matrix formed from the upper left ith order minor 

of A, then the eigenvalues of Ai are distinct from those of A icl and properly 

separate those of A itl' If fi(e) is the characteristic polynomial of Ai, namely 

fi(E) = DET (aI - Ai),fo(e) is defined to be one, and fn(e) # 0, then the 

number of eigenvalues of A greater than E is the number of sign changes in the 

sequence fO(e), fl(e), f2(e), . . . . fn(e). 

If A is in tridiagonal form, namely 

A= 

0 \ 
EL Sl 

Sl a2 82 (39) 

the fi(e) may be given by the following formulas 
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fo(E) = 1 

fi(E) = E - a1 

(40) 

If some pi = 0 the matrix decomposes into a direct sum of matrices, each 

of which may be considered separately. This must happen if A has multiple eigen- 

values . Therefore, we may assume without loss of generality that all pi f 0 and 

hence all eigenvalues are distinct. 

The formulas in equation (4) may be used to determine the number of sign 

changes in the sequence fO(e), fl(E), . . . . fn(B) and thereby determine intervals 

of any desired size in which each of the distinct eigenvalues may be found. It 

may be noted that the vanishing of an intermediate fj(a) (15 j < n) does not 

affect the number of sign changes in the above sequence because if fj(e) = 0, 

then by equations (40) fj-,(e) # 0, fjtl(E) # 0 and fjm1(6), fj+l(e) must 

have opposite signs. 

Once the eigenvalues E have been found the corresponding eigenvectors XT 

= (Xl’ 5.9 l **j xn) may be found by one of several straight forward methods. 

The simplest is that of back substitution. !l%kexn=l. Then 

“n-1 = (E - 01,)/ @n-l 

X n-2 = ((E - 01,-l) x+1 - B,J Bn-2 (41) 

xj-l = ((e - aj' xj - Bj Xj+J Bjml - 

However, this method leads to numerical instabilities should any of the Bi be 

small in absolute value. 

Another method, referred to as the method of orthogonal factorization, is 
QY 

the following. Consider a matrix B 
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. 

(42) 

p is singular so DET (B) =-Q. Consider the following sequence of matrices B (k) 

l<k<n-1, defined as follows: 

B(k) (k) 
= Jk,k+l 

B(k-l) , B(O) = B. 

If we define the c (l), s(l> 
Of 'g) as follows 

c(l) = ul/(q + $)li2 1 

Jl) = B& + $1 
v2 , 

then B(l) takes the form 

B(l) = 

el 

g2 

82 

(43) 

(44) 

(45) 

where 
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a1 = ($ 
2 v2 

+ Bl) 

el 
= p, c (9 + u2 s(l) 

fl = i32s (1) 

g2 
= p, $1) - u2 c (1) 

h2 = - p2 c (1) . 

We define by induction 

c(k) 2 l/2 
= %@ + Bk,) 

s(k> 2 l/2 
= hs/(gk2 + pk) . 

Then the matrix Btk) appears thus: 

3 

5 el 

0 d2 

B(k) = 

0 

fl 

e2 f2 

4r 

0 

(46) 

(47) 

(48) 

where 



2 v2 
% = (< + &) 

ek 
= hk Jk) + yr+l s(k) 

gk+l = % dk) - J& Jk) 

%+l = - t&+1 c(k) . 

(49) 

NowletU = t-;ln Jtnm2) 12) J(l) 

J2,3 1,2' Then UB is upper triangular 
- 9 n-2,n-1 .'. 

with only the first three upper diagonals having elements different from zero. 

If DET (B) = 0 then DET (LIB) = 0 and hence 4, = 0 for some k. If dk = 0 for 

k # n then by equations (49)pk = ‘0, contrary to assumption. So dn = 0. If ET 

is the vector (0, 0, -m-Y 0, 1) then ET IJB = 0 or BUT E = 0 or (A - ~1) U% = 0. 

Hence AUT E = EL? E and U% is an eigenvector of A corresponding to the eigen- 

value E. 

A third mthocl, referred to as the method of inverse iterations, is the 

following. Let ~~ and Uj be the corresponding eigenvalues and eigenvectors of 

A and let zi be the calculated approximation to ei. Let x(o) be an arbitrary 

vector which we expand as follows: 

x(o) =f 
'k 'k' (50) 

k=l 

We assume that Ci # 0 and X (O)~x~~) = 1. Consider a sequence of vectors X (J) 

defined by 

x(j-l) = (A _ -ii) x(j) j 2 1. (51) 

If we set j = 1 in equation (51) we see that 
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I 

x0) 
g cu 

= k4, s = 

d.U. 

(ii4 ) + kil (;: ) i i 
k#i 

satisfies equation (51). More generally 

,(J> = 'i'i. 
(f&J + kEl (z>)j l 

i 
k#i 

(52) 

(53) 

If IEi - Zi 1 is small campared to 1 "k - Ei 1 k # i, (which would be expected) 

then the X(j), if normalized, would converge to Ui as j 4 03 . 

2.4 Orthogonal Reduction Methods 

This is a class of methods which constructs an orghogonal matrix U for a 

given real symmetric nxn mtrix A such that 

VT AU = D (a diagonal matrix) 

by obtaining U as a limit 

(54) 

LL5n.l $k) = u 
k‘m 

where UCk) is ~~~ualLl.y a product of elementary orthogonal matrices U. 
J 

U(k) = u1u2u3... Uk. (56) 

(55) 

The columns of U will be the column eigenvectors with the corresponding diagonal 

element of D being the corresponding eigenvalue. 

2.4.1 Jacobi Methods 

In these methods the elementary orthogonal matrices are the Jacobi matrices 

J ij' Let A(') = A, 
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A(k) = Ji;3, A&-l) J(k) 
ikjk (57) 

,(k), @) (k) be the numbers associated with the J. 
lkj k' 

and Jk) be the elements 
P9 

of Atk). The elements of A(k) are related to those of A (k-1) as follows: 

@) 
ikik = C(k) @) $d + $d &l>) 

ikik ikjk 

+ @) @) $d + $4 ,(k-1)) 
ikjk jkjk 

(k) 
?jkjk = 

$d @) $4 _ +) a(k-l)) 
ikik lkjk 

_ $4 @) a(k-l) 
ikjk 

_ +) $d) 
jkjk 

$4 = 
ikjk 

$) @) &l) + @) $+l)) 
ikik ikjk 

_ +> ($4 &-1) + @) $d ) 
ikjk jkjk 

c&k) = 
ikq 

$d @-l) + s(k> $-? 
ikq jkq 

L 
,(k) = 
jkq. 

$k) @-l) _ C(k) @;l’ 
ikq k / 

q # ik’ jk 

(k) &) $-l) + ,(k> &l) 
-I 

"pik = pik pjk' 
\ 

/ 

p # ik9 jk 

@) = $d $+l) _ &) 

pjk pik 

a 

pjk 

&) = &s-l) 
P9 P9 

(58) 
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From equation (58) we can easily verify 

(cYJk) )2 ikik 

= (&-1) )2 
ikik 

+ 2 (cx(kT1))2 + (a!kT1))2 
ikJk JkJk 

(59) 
(a(k))2 + 

lkq 

(cJk) pik )2 + (IJ$))~ = (ci$YQ))" + (cx$i1)12 p # ik, j, . 
k 

If we set 

$k) 
$+l) 

ikik 
+ &l) 

jkjk 
(60) 

p= 

then it is easily seen that (k) a. 
'kjk 

= 0. 

Now we define 

a(k) 

(61) 

,$k) 

$d .= f t (,(k) )2 
p=l q=l pq 

then fck) = flkml) = . . . = f(O) = f, f = ack) + Uck). If c(l’)/~(~) is 

chosen by equation (60)' then 
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a(k) = a(k-1) 

(62) 

,w = Jk-1) - 2 (f-qj;))2 

(k) by the fact that ~3%~~ = 0 and equations (59). If ik, j, are chosen so that 

(63) 

then 

ulk) I 1 - h&] u(~-~) 5 p - -&I Ir &O). (64) 

Hence 

1iJ.U ,$k) = 0 
k+w 

(65) 

1i.m A(k) = diagonal matrix 
k+m 

lim uck) = 1i.m . .2. . . . J;;;, = U, J(l) Jc2) 

k+m k4 a, lYj l J2 

an orthogonal matrix of eigenvectors of A. 

There is a considerable amount of freedom in selecting ik, j, at each step. 

We may, for example, choose ik, j, so that (k-1) Q. . 
'kJk 

has the largest absolute value 

of all off-diagonal elements. We may also choose ik, j, Sequentially as follows: 

ik = ik,li jk = jkel +l for ik 1 < n-l and j, 1 < n, 

5 = ikml f 1j j, = ikt 1 for ikel < n-l and j,-, = n, (66) 

ik = 1, j, = 2 for & = n-l and j,-, = nj 

or 
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j, = jkmlY s = ik,l + ’ for jkml < n ana h-1 < jkwl -’ 

j, = j,-, + 1, ik = 1 for j,-, < n and ikml = j,-, - 1 (67) 

i, k = 'Y jk = 2 for j, 1 = n and ik 1= j, 1 - 1 . 

we obtain convergence for selection schemes equations (66) and (67) provided, 

if we set c(k) = cos a(k), stk)= sin atk), the angles a(k) all lie in some 

closed interval contained in the open interval (- ll/2, II/2). 

2.4.2 LEL Budde-Kaiser Methods 

In these methods Householder matrices will be used as elementary orthogonal 

matrices to construct the matrix U which diagonalizes A. 

In the La Budde methods the iteration consists of two parts: one 

and, two 

HP) 

JE) 

A(k-l) H(k) = B(k) 
1 

Bck) ,$I = Atk) . 

(68) 

(69) 

It is convenient to partition the matrices A (k) and B(k) as follows. 

(70) 

sm = ($1 : R(k)T) 
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XW = ( bk) 12 : 
Z(k) 

Here Alk), Blk) 1 1 are (n-l) x (n-l) m&rices, Ag'Bp) are (n-2) x (n-2) 

matrices, s(k), x(k) - are (n-l) dimensional vectors, ana Rtk) ,' T(k), z(k), y(k) 

are (n-2) dimensional vectors. 

If F is a matrix or vector, we define [IFI ( to be the square root of the sum 

0-d of the squares of all of the elements of F. We now define the matrices Hl , 

J$) used in the iteration. (k) Let+ &d W(k)T = I- i i where 

&IT = (0, w(k) 

1 
‘r 

wCk)). If 
I .“’ n 

we set 

WF' = p/2 Cl+ Ig, (k-l+ / Ip(k)II -j 1’2 

(71) 

w(k) = 
j sgn (q2-l)) d$“/ (a$) 1 1 Jk) 11) 3 _ <jln 
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(k) 
Bll 

(k-1) 
= %l 

li$‘l’ = 1 [ &-1) ( 12 = 

Z(k) = .o 

fg = +-l)T A(k-l) #-1) 
1 

I2 i- 1 (R(k-l)l I2 

(72) 

1 [Ylk) 1 12 = #-1)T Abl) 
1 

(I _ V(k-l) V(k-l)T) A(k-l) V(k-l) 
1 

where dk) = s(~)/\ IS(~)\ 1. The effect of J$) on B(k) is as follows. tit 

c(k), s(k) (k) be the quantities associated with J12 . Then we have 

where 

and 

(k) 
51 + A a$) q a$-” + A ag’ (73) 

04 = 
Aa, 

(,(k)j2 (&k) (k-1) ,(Jd 
22 -a;1 +2pT (74) 

where 

52 
(k) = $) + A f$) (75) 

A &k) = ($+2 
12 (76 

Finally 
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It can easily be shown frm equations (72 to 77) that if d (k) is any 

sequence of numbers satisfying the foU.owing: (1) ack) > ‘0, (2j Ialk) I are 

b0maea away from zero, (3) Ia I are bounded’ away &om =, and 

c (k) (k-1) 
%l - f$$ + alk) 

pT= 2 !$I. 
then 

( 

I 

E. ’ 0 

1 I 

Atk) = 
L 

lim I 
) -----we -----a- 

k+a -0 f 
L 41 

1 =o 

(78) 

(79) 

where Al is an (n-l) x (n-l) matrix and el is an eigenvalue of A. Equation 

(79) is true if any one, two, or all of the conditions (1) - (3) are replaced 

by the corresponding conditions (l)! - (3)' : (1)' d (k) < 0, (2) 1 Iatk) 1 

approaches zero no faster than Ip12 (9) 12, (3) t la(k) l-1 approaches zero no 

(k) 2 faster than lp12 I . 

equations (72 to 77) that if It can also be shown by 

(k) 
0 I 1% 

(k-1) 
51 - sg 

2 I$) 
I 

(80) 

then 

lim IIR(k)II = 0 ' lim IIdk)lI = 0 
k+m k+m 

(81) 

lti A(k) = ---,,I-,,, 
k4m 
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where E2 is a 2 x 2 matrix and A2 is an (n-2) x (n-2) matrti. 

Two'special cases of interest will be noted here. One is the case where 

we define 

(p-1) - $1 )2 + 4 (p(;))2 
11 1 . (82) 

These choices of d (k) cause a$) = 0 ana maximize IA CX~)I. The other case 

is the one in which we set c (k),Jk) = 0. In this case the Jacobi transforma- 

tion J$) B(k) J$) reduces to a simple row and column permutation which is 

exact and requires no computation. 

The Kaiser iteration may be define6 as follows 

H(k) A(k-l) H(k) = A(k) 
0 0 (83) 

where 

H(k) = 1 _ 2 w ck) wcklT 
0 0 0 

w(k)T = 0 (w(k), wg) 1 ' . ..' w f', . (84) 

Before proceeding with the kth step 
(k-1) we make sure that all elements a.. 
1J 

2<j<n are non-negative. This can easily be done by appropriate row and 

column multiplications. We define 

t (k-1) )/J= 
j=2 

j=2 p=2 
I/ (n-1) 

and we take 

w!“’ = c(k) 

,g, = wy) t . . . = wF’ = Jk) . 

(85) 

(86) 
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Then we have 

(c(k))2 t (n-l) (s q2 = 1 

cg’ = 51 
(k-1) cl _ 2 ($d)2)2 

(87) 

- 4 Jn Jk) s(k) (1 - 2 ($q2 t(k-1) 

t 4 (n-l) (c(k) s(k))2 u(~-') . 

If we set 

then 

and 

If we choose 

cos a(k) = 1 - 2 (cCk)):! 

s‘in a(k) = 2 Jn'--i- $k) $4 
(88) 

( cos a(k))2 t (sin a(k))2 = 1 (89) 

ag’ = (,-OS a(‘) ’ (k-1) _ 2 cos a(k) sh a(k) t(k-1) 

) 51 

+ ( sin a(k) 1' (k-1) 

(90) 

e l/2 ($$$ f (k-1) ) t l/2 cos &) (e-1) _ (k-1) 

_ sin a(k) t(k-1) 
. 

tan 2aCk) = -zt (k-l),($-l) _ ,$k-l) ) 
(91) 

then cxg) assumes its maximum value as a function of a (k) and is 
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(k) 
041 

= l/2 ((x&l) f u(k-l)) 

(92) 
24-P 

+ v2 La= c (k-l) 1 ,$k-l)) c 4 +-l) ] . 

This shows that all (k) L T1 
l-1) with equality holding only if t (k-1) = 0. If the 

a(k> are chosen by equation (91) then equations (79) hold true and convergence 

-is obtained. 

2.4.3 The L-R Method 

In this section we will assume that the nxn symmetric matrix A is positive 

definite and is in tridiagonal form, i.e. 

A= (93) 

We may also assume, without loss of generality as before that all pi # ,O. 

The basic iteration is as follows. 

We factor A('-') into 

where 

,!k-1) 

a2(k-l) 

(94) 

(95) 
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,.jk-1) is upper triangular with non-zero elements only on the main and first 

upper diagonals. We now form 

*(k). = #-l) 

A(J-=) is similar'to A (k-1) i.e. 

#d T 

A(k) = (+l)T)-l A&-l) &k-l)T . 

Also, A(k) is in tridiagonal form. 

The relations between the elemnts of A (k-l), #-11, and A(k) are as 

follows 

@-l) 
1 

= JF 

(k-1) = 
el 

(k-l),,+) 
Bl 1 

d(k-l) = (a(k-l) _ (,(k-1) * l/* 
j 3 j-1 )) 26j<n 

e(k-1) = &k-+&k-l) 
j 3 

2<jsn-1 

(96) 

(96) 

(97) 

= (a@-+* + (,(k-l))* 
1 1 

= Jk-1) 
1 

+ (&k-l) ,*, @-l) 
1 1 

= @-l) ebl) 
2 1 

= 
$4 

k/q- 

$1' - (p (k-l+*, e-1' 
1 

= (,#-l))* + (,(k-l))* 
j 3 

= a(k-1) 
ii 

_ (@(k-l)/ a(k-1) 1" + (p(k-l)/d(k-l))* 2 < j < n-1 
j-l j-l 3 j .- - 
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.Jk) n 
= (a(k-l) )* = #-l) _ (Bbl),d(k-l)f 

n n n-l n-l 

Pi") 
= &l) e(k-l> 

j+l J 

= -@d/,$-l) > ($-) _ (Bbl),db-l) )“f/* 
j J j+l j j 

2<j<n-1. 

(k) It can be shown from equations (97) that all 8, 4 0 as k --Go3 and 

hence 
J 

1iDl Atk) = a diagonal matrix 
k4m 

lim U(k) = m #)T L(*)T . . . #)T = u 
k-4 m k-+m 

where U is a matrix, the columns of which are the eigenvectors of A. Umaybe 

multiplied on the right by a suitable diagonal mtrix D so that UD is ortho- 

gqnal. In theory one may obtain an orthogonal matrix as a limit of a product of 

non-orthogonal matrices ,(j>T , but in practice it may be better to obtain the 

vectors by one of the methods of section 2.3. 

We may speed up the iterations of equations (97) by eliminating the square 

roots from the process as follows 

(@-l) )* = e-1’ 
1 

(ep-l) )” = (B(k-l),dtk-l) )* 
1 1 

(#+l))* = $-l) _ (,(k-1)f 
J j-l 

(,(k-1) )" = (B(k-l),a(k-l) )* 
3 j J 

(99) 
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cp’ = (&l).)* + (,(k-l))* 
1 1 

dk) I2 1 
= #+l) e(k-l)f 

2 1 

(p) = 
j 

(&-c-l) f + (e(k-l) 1” 
3 3 

dk))* 3 
= (&-1) e(k-l))* 

j+l j 

,(k) = @-l) f’ . n n 

(k) Here we ignore the signs of pi and store only (pi (k) f. The limitofA (k) tin 

be a diagonal matrix of eigenvalues of A and we May obtain the eigenvectors by 

one of the methods of section 2.3. 

Convergence may also be accelerated by a series of origin shifts. Instead 

of the sequence A(k) , we consider the modified sequence A -@I = A(k) - %I where 

the uk are chosen to be close to the smallest eigenvalue of A or the smallest 

diagonal element of A. More complicated chbices of uk will insure cubic con- 

vergence to diagonal form. 

2.4.4 The Q-R Method 

The Q-R method is based upon the fact that any matrix A may be factored in 

a non-iterative fashion into a product A = UT where U is orthogonal and T is 

upper triangular. If A is symmetric and in tridiagonal form 

A= (100) 
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, 

then T is upper triangular with non-zero elements only on the main diagonal 

and the first two upper diagonals. If we form A' = TU, then A and A' are 

similar (A' = UTAU) and A' is also in tridiagonal form. We can assume as 

before, without loss of generality that all pj # 0. 

We will formulate the basic iteration as follows: A(k) = +)T A(k-l) +) 

where dk) is an orthogonal matrix defined by 

$d = Jp) Jp . . . . . 
, , 

JF?(;-;) J(k) b-1) . 
-9 - n-1,n (101) 

kt c(k)(j), s(k)(j) be the quantities associated with the J (k) (j> 
j,j+l * It will 

be convenient to use the following notation: 

A(k-l) (0) = Abl) 

A(k-l) ( j ) = J(k) (j) A(k-l) (j-1) 
j,j+l 

A(k-l) (n-1) = B(k) (0) (102) 

B(k) (n-1) = A(~)(O) = A(k) 

The general forms of A(k-l)(J) and B(k)(j) are as follows 
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A&-1)(j) = 
/ 

hp' 

0 h$) 

.c> \ 

,(k) 
3 

0 

0 

&k) 
j-l 

&) 
3 

0. s&k) 
J 

0 

0 \ 
&") 
3 

$) 
3 

(k) 
"jtl (k) 0 0 uj+l 

(k-1) a(k-l) &k-l) 
@jtl jt2 jtl 

&k) 
j-l 

0 
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We wiU. now define the quantities c (k)(j) and s(k) (3) and the elements of A (k-1) (3) 

and #) (3 1. 

@(l) = p),( (+-1))* c ($4) 2p 

c(k) (1) = ~-l),((+l)o* t ~e(k-l)~2~1/2 
1 . 

From this it follo17s that 

= (((-q-y f @-l) )“f/’ 
1 

= $-l) (k-1) t $-1)),h(k) 
(011 1 

= @) (1) $-l) 

= (($4 )* _ e-l) $-“‘),h(lr) 
1 

= -c (k)(l) ,&k-l) . 

The remaining quantities are defined as follows: 

s(k)(j) = &~-1),((g("))2 t (p(k-l)j2j1/2 
3 j 3 

(105) 

(106) 

(107) 

c(k)(j) = g$q((g;k))2 t ($-q*q-/* . 

Then it can be seen that 
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h(k) 
3 

= ((g(“)f 
j 

+ (&k-l) j91/* 
3 

, 2 <, j <_n-1 

#) 
j 

= B(~-l)(-c(k)(J-l) g(k) 
3 3 

+ aitll))/h(k), 2 < j < n-l 
3 -- 

$) = 
3 

s(k) (J) Bi@;‘) 

(k) 
gj+l = 

s(k) (5) u(k) 
j 

_ c(k)(j) @-l) 
j+l 

(k) 
ujtl = 

-c(k) (3) Bib;1 

g(k) = hck) . 
n n 

2 _< j 5 n-2 

(108) 
2.S j <n-l 

2 I; j In-2 

For the elements of B (k) (j> we have the following relations 

a?' = $4 + (q-l-1 + cy%-1))(B~-1))2,(h~))2 

By) = s(k) (1) hp) 

t!k) = $d(l) h(k) -c(k)(l) @ 
1 1 

VP' = -c(k> (1) $d 

(-p = 
j 

c(k)(J) v(k> + s(k)(j> ,(k) 
j 3 

2 5 j ,< n-l 

p(k) = 
J 

s(k)(J) h(k) 
jtl 2 -<j <n-l 

t(k) = 
3 

s(k)(J) v(k) -c(k>(j> 8(k) 
3 3 

2 <j in-1 

(k) 
vjtl = 

-c(k)(j) h(k) 
jtl 255 sn-1 

v(k) = $4 l 

n n 

(109) 



It can b,e shown from equations (105 and 106) that if A is positive 

definite then 

lim A(') = (diagonal Inatrix), 
k+m 

and 

lim U(k) = lh m p v(2) . . . V(k) = u 
k4m k+ 

(110) 

h-1) 

where U is an orthogonal matrix of column eigenvectors of A. 

Equations (ll0 and 1lL) can be shown to hold true under the more general 

requirement that A need only have eigenvalues with distinct absolute values. 

Convergence can be accelerated by origin shifts, i.e. employing the modified 

sequence of matrices dk) = A(k) - ukI where uk is taken to be close to the 

smallest eigenvalue (in absolute value) of A or the smallest, in absolute value, 

diagonal element of A. 

2.5 Step by Step Methods 

In these methods, an eigenvalue E and a corresponding eigenvector X are 

obtained, one pair E and X at a time. When an E and X have been obtained, the 

matrix may be transformed by the method of deflation to a matrix of essentially 

one lower order. We will describe two such methods: the power method and the 

conjugate gradient method. 

2.5. The Power Method 

Let A be a real symmetric nxn matrix with eigenvalues ei so ordered that 

I~ll~l~,lr**.*.21~nl and let Ui be the corresponding eigenvectors of A. Let 

X0 be a vector which we may write in terms of Ui as follows: 

x0 = 
E vi ui. 

i=l 
(112) 
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We further define 

s = AkX, = AXkl . (113) 

s = f vi e; ui . 
i=l 

We wish to study the behavior of Xk as k+w. We consider three cases. 

Case 1 (all eigenvalues having distinct absolute values). 

Here we have IE~I>~E~/>.....>IE~/. 

We now assume that v1 # 0. Then Xk can be written: 

%= E; (vlul + it 
i=2 

vi ($)k ui, . (115) 

In this case (E~/E~)~ approaches zero as k + m for i # 1, so Xk/l IX,\ I 

When Ul has been computed to sufficient accuracy, 

deflate the matrix A, and continue. 

Case 2 (multiple eigenvalues, distinct eigenvalues having distinct absolute values). 

Here it is sufficient to consider the case where e1 = s2 = . . . e 
Pi 

I~pI~l~P+ll>*.*.>I~nI. We now assume that at least one vi # 0 for l,< i 5 p. 

Now any linear combinaticn of the eigenvectors U 1' . . . . Up will also be an 

eigenvector of A corresponding to the eigenvalue el. We may write Xk as follows: 

n 

vi (ilk ui, -I %= $(u f 1 
i=ptl -c 

(W 

where 

u = *i ViUi (117) 
i=l 

and U is an eigenvector of A corresponding to the eigenvalue E.. In this case 1 

(E~/E~)~ approaches zero as k + m for i > p, So %/I lXkl 1 approaches the 
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eigenvector U. When U has been computed to sufficient accuracy, we may 

proceed as in Case 1. 

Case 3 (une.qual eigenvalues with equal absolute values). 

Here it is sufficient to consider the case where e1 = -e2, 

lell = 1.~~1 > /E~( > . . . >I Ie,I . We assume that vl# 0 and v2 # 0. Then 

3s can be written 

n 8. k 

xk= $ blUl t (-1)" v*u* + 
c 

i=3 
(118) 

or 
n 

x2P = fy (vlul t v*u* t 1 vi ($*l ui, 

i=3 
(119) 

n E. 2Ptl 
x2Ptl = E;e+l (vlul - v2u2 = 1 vi (<I ui, . 

i=3 

The first of equations (Y9), for example, may be used to determine 2 
E lby the 

methods of cases 1 and 2. To determine the eigenvectors U1. and U2, we take 

two sequences 

Then 

y2P = x2e + elX2&.1 

Z2P = z21 - El x2Ll * 

E 2P-1 

y2r = kf" (2v2u2 t f vi (? t "1) ($1 'i) 
i=3 1 

E: 21-l 

z21 = Ey (*v*u* = f Lvi (i - E1) (1) 'i) 
i=3 1 

(120) 

(121) 

and as P -+CO &/I Iy,,I I app roaches Ul and Z2JI lz,,l I approaches U2. We 
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may then deflate the matrix twice using E 1' up - El> U2 and continue as 

before. 

In the course of the actual ccmputation we nray determine that we have 

cases 1 or 2 by noting that the iterates s/l IsI I converge smoothly toward a 

limit vector U. Case 3 may be detected by noting that the successive iterates 

“k/I iq I and x&l/ I I%,,1 I oscillate between two limiting vectors and the 

special formulas of that case may be applied. 

Convergence may be accelerated by means of origin shifts, i.e., employing 

a modified sequence of vectors q = (A - ~$1) Sal. We may choose ul, for 

example, to be near (l/2) (le21 t Ien]) or near the average of the absolute 

values of the two diagonal elements having the smallest absolute value and the 

second largest absolute value. 

2.5.2 The Conjugate Gradient Method 

We know &at the largest and smallest eigenvalues of a real symmetric 

matrix A is given by the maximum and minimum respectively of the expression 

(xTJw/(x% as a function of X where X is a vector. The conjugate gradient 

method is a method for obtaining the maximum or minimum of that expression and 

may be described as follows. 

Let X0 be an arbitrary vector such that X%o = 1. Then we define a 

sequence of vectors % as follows. We assume that $-,Xl-, = 1 and define 

t k-l = $1 PXk-1 

?K = pxk-1 - tk-l%-l = pxk-1 - 'k-lxkT-1 ?k-l (122) 
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Wenotethat IIzJI 521IAlI and<-lZk=Oforallk. WewiXLshowthatif 

either 5s = 0 or gk = 0 then Xlelis an eigenvector of A. If Zk = 0, then 

S-1 is an eigenvector of A by the second of equations (122). If gk = 0 then 

we have 
' = gk = $ pxkm.1 = (g-1 A - $1 Mk.J <-l) 5-1 

= q-1 A(1 - x-k-1 g-1) AxJpl 

= g-1 A(1 - s-1 x:-1)(1 - 5-1 g-1) mk-l 
(123) 

YT 
= [(I - ‘k-1 $1) pxk,lj [‘I - s-1 x:-l) %-l-j ’ 

since I is a projection onto the subs-pace of all vectors orthogonal 

to 'k-1. Equation (123) implies 

(I - ‘k-1 x;f-1) mk-l = ’ (124) 

which can only happen if Xk is an eigenvector of A. Thus we may only consider 

the case where !Zk # 0 and gkl{ 0. We define 

'k = \/ 1 /‘,I 1 

5s = %/ 

(125) "k = Y; AYk 

q = 'k-1 -+ % 'k 

'k = 'k/lljylI 

where % remains to be chosen. We note that rkkf Ofor all choices of ok. We 

now form SC 
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2 
lt% 

= -$-I ' 
2hk ?ls + (l-& - tk-l)< 

2 
1 t ai 

= tk-l ' 
1 

b-k - $1)) - 

Let Ek be any sequence of numbers and set 

Then equation (126) becomes 

tk = $-l ' 
4a" $ 

2 
4% ' ($ 1 - "k t 'k) 

2 - 

(126) 

(127) 

(128) 

If the $ are now subjected to the following restrictions: (1) $ > 0, 

(2) I$1 is bounded away frcnn zero, (3) I$1 is bounded away from m, then the 

tk form a monotonically increasing sequence bounded from above. Hence the tk 

must converge to a limit, namely the maximum of (XTAX)/X!X), and tk - tkml 

must approach zero as k 4~0 . But by the conditions imposed on the 4 and 

equation (128) hk and hence gk must approach zero as k 4m. Hence the Xk 

approach an eigenvector of A and the t k approach a corresponding eigenvalue. 

Once the eigenvalue and eigenvector pair have been computed to sufficient accuracy, 

the process of deflation may be used on A and the procedure may be continued. 

We also obtain convergence if one, two, or all of the conditions (1) - (3) 

are replaced by the corresponding conditions (1)' Sk < 0, (2)r Is,~ -+ 0 no 

faster than <, (3)' Il/~,l 4 0 no faster than <. Condition (1)' will lead 
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to the computation of the minimum 

maximize Itk - tkmll are given by 

of (XTpX)/x%). The choices of E$ which 

'k = f 

or 

2 2 

%= 
(tktl - "k) + 4hk . 

(129) 

(130) 

3. Conclusions 

Of the three classes of methods described in this report, the step-by-step 

methods appear to be the poorest for the following two reasons: (1) they are 

generally slow in convergence, relative to the other methods, even with judicious 

choices of origin shifts; (2) there is a cumulative loss of accuracy as one 

proceeds by deflation to calculate the eigenvalues and eigenvectors occurring 

later in the computation. 

The orthogonal reduction methods (with the exception of the L - LT method) 

have the advantage that the eigenvectors are built up as a product of elemen- 

tary orthogonal matrices, a process which is numerically stable and guarantees a 

set of eigenvector approximations which is reasonably orthogonal. In the L - LT 

method we obtain the orthogonal eigenvector matrix as a product of elementary 

non-orthogonal matrices, a procedure which is not recommended from the point of 

view of numerical stability or accuracy. However, the orthogonal reduction 

methods (with the exception of the L - Lx method) are slow as compared with the 

Sturm sequence method and the square root free modification of the L - LT method, 

although they are faster than the step-by-step methods. 

The fastest methods for obtaining the eigenvalues of a real symmetric matrix 

are the Sturm sequence method, applicable to general real symmetric matrices and 

the square root free modification of the L - LT method, applicable to positive 

41 



definite real symmetric matrices. Of the two methods, the latter is faster 

when applicable. Of course, a real symmetric matrix can always be made positive 

definite by a suitable origin shift, but this can result in a loss of accuracy, 

particularly if the required origin shift is large. 

Hence, for the calculation of the eigenvalues of real symmetric matrices 

the Sturm sequence method is recommended in the general case and the square root 

free modification of the L - LT method is recommended in the positive definite 

case. Once the eigenvalues have been obtained, the method of inverse iterations 

appears to be an effective and stable method for obtaining the eigenvectors. 

The reduction to tridiagonal form, prior to the application of the Sturm sequence 

or square root free modification of the L - LT method, may be most quickly and 

stably carried out by the Householder method. 
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