8 research outputs found

    New species and nomenclatural changes in Angraecum (Orchidaceae) from Madagascar.

    No full text

    New phylogenetic insights toward developing a natural generic classification of African angraecoid orchids (Vandeae, Orchidaceae)

    No full text
    Despite significant progress made in recent years toward developing an infrafamilial classification of Orchidaceae, our understanding of relationships among and within tribal and subtribal groups of epidendroid orchids remains incomplete. To reassess generic delimitation among one group of these epidendroids, the African angraecoids, phylogenetic relationships were inferred from DNA sequence data from three regions, ITS, matK, and the trnL-trnF intergenic spacer, obtained from a broadly representative sample of taxa. Parsimony and Bayesian analyses yielded highly resolved trees that are in clear agreement and show significant support for many key clades within subtribe Angraecinae s.l. Angraecoid orchids comprise two well-supported clades: an African/American group and an Indian Ocean group. Molecular results also support many previously proposed relationships among genera, but also reveal some unexpected relationships. The genera Aerangis, Ancistrorhynchus, Bolusiella, Campylocentrum, Cyrtorchis, Dendrophylax, Eurychone, Microcoelia, Nephrangis, Podangis and Solenangis are all shown to be monophyletic, but Angraecopsis, Diaphananthe and Margelliantha are polyphyletic. Diaphananthe forms three well-supported clades, one of which might represent a new genus, and Rhipidoglossum is paraphyletic with respect to Cribbia and Rhaesteria, and also includes taxa currently assigned to Margelliantha. Tridactyle too is paraphyletic as Eggelingia is embedded within it. The large genus Angraecum is confirmed to be polyphyletic and several groups will have to be recognized as separate genera, including sections Dolabrifolia and Hadrangis. The recently segregated genus Pectinariella (previously recognized as A. sect. Pectinaria) is polyphyletic and its Continental African species will have to be removed. Similarly, some of the species recently transferred to Angraecoides that were previously placed in Angraecum sects. Afrangraecum and Conchoglossum will have to be moved and described as a new genus. © 2018 Elsevier Inc.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Malaxideae (Orchidaceae) in Madagascar, the Mascarenes, Seychelles and Comoro Islands

    No full text
    The tribe Malaxideae (Orchidaceae, subfamily Epidendroideae) (sensu Pridgeon et al. 2005: 453) in Madagascar and adjacent archipelagos is revised. In this region it comprises the four genera: Liparis, Malaxis, Oberonia and Stichorkis. All of the species are described and their typification, history, identification, distribution and habitat are discussed. Conservation assessments and distribution maps are included. A checklist of the genera and species and a key to their identification are provided. Six new species: Liparis bemarahensis, L. bosseri, L. chantaliae, L. laurentii, L. magnifica and L. superclareae are described

    Malaxideae (Orchidaceae) in Madagascar, the Mascarenes, Seychelles and Comoro Islands

    No full text

    A Novel 8-Predictors Signature to Predict Complicated Disease Course in Pediatric-onset Crohn’s Disease: A Population-based Study

    No full text
    International audienceBackground The identification of patients at high risk of a disabling disease course would be invaluable in guiding initial therapy in Crohn’s disease (CD). Our objective was to evaluate a combination of clinical, serological, and genetic factors to predict complicated disease course in pediatric-onset CD. Methods Data for pediatric-onset CD patients, diagnosed before 17 years of age between 1988 and 2004 and followed more than 5 years, were extracted from the population-based EPIMAD registry. The main outcome was defined by the occurrence of complicated behavior (stricturing or penetrating) and/or intestinal resection within the 5 years following diagnosis. Lasso logistic regression models were used to build a predictive model based on clinical data at diagnosis, serological data (ASCA, pANCA, anti-OmpC, anti-Cbir1, anti-Fla2, anti-Flax), and 369 candidate single nucleotide polymorphisms. Results In total, 156 children with an inflammatory (B1) disease at diagnosis were included. Among them, 35% (n = 54) progressed to a complicated behavior or an intestinal resection within the 5 years following diagnosis. The best predictive model (PREDICT-EPIMAD) included the location at diagnosis, pANCA, and 6 single nucleotide polymorphisms. This model showed good discrimination and good calibration, with an area under the curve of 0.80 after correction for optimism bias (sensitivity, 79%, specificity, 74%, positive predictive value, 61%, negative predictive value, 87%). Decision curve analysis confirmed the clinical utility of the model. Conclusions A combination of clinical, serotypic, and genotypic variables can predict disease progression in this population-based pediatric-onset CD cohort. Independent validation is needed before it can be used in clinical practice
    corecore