5 research outputs found

    Reduced penetrance of pathogenic ACMG variants in a deeply phenotyped cohort study and evaluation of ClinVar classification over time

    Get PDF
    Purpose: We studied the penetrance of pathogenically classified variants in an elderly Dutch population from the Rotterdam Study, for which deep phenotyping is available. We screened the 59 actionable genes for which reporting of known pathogenic variants was recommended by the American College of Medical Genetics and Genomics (ACMG), and demonstrate that determining what constitutes a known pathogenic variant can be quite challenging. Methods: We defined “known pathogenic” as classified pathogenic by both ClinVar and the Human Gene Mutation Database (HGMD). In 2628 individuals, we performed exome sequencing and identified known pathogenic variants. We investigated the clinical records of carriers and evaluated clinical events during 25 years of follow-up for evidence of variant pathogenicity. Results: Of 3815 variants detected in the 59 ACMG genes, 17 variants were considered known pathogenic. For 14/17 variants the ClinVar classification had changed over time. Of 24 confirmed carriers of these variants, we observed at least one clinical event possibly caused by the variant in only three participants (13%). Conclusion: We show that the definition of “known pathogenic” is often uncle

    Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes

    Get PDF
    Type 2 diabetes (T2D) is a very common disease in humans. Here we conduct a meta-analysis of genome-wide association studies (GWAS) with ~16 million genetic variants in 62,892 T2D cases and 596,424 controls of European ancestry. We identify 139 common and 4 rare variants associated with T2D, 42 of which (39 common and 3 rare variants) are independent of the known variants. Integration of the gene expression data from blood (n = 14,115 and 2765) with the GWAS results identifies 33 putative functional genes for T2D, 3 of which were targeted by approved drugs. A further integration of DNA methylation (n = 1980) and epigenomic annotation data highlight 3 genes (CAMK1D, TP53INP1, and ATP5G1) with plausible regulatory mechanisms, whereby a genetic variant exerts an effect on T2D through epigenetic regulation of gene expression. Our study uncovers additional loci, proposes putative genetic regulatory mechanisms for T2D, and provides evidence of purifying selection for T2D-associated variants

    Whole-Exome Sequencing in Age-Related Macular Degeneration Identifies Rare Variants in COL8A1, a Component of Bruch's Membrane

    Get PDF
    Purpose: Genome-wide association studies and targeted sequencing studies of candidate genes have identified common and rare variants that are associated with age-related macular degeneration (AMD). Whole-exome sequencing (WES) studies allow a more comprehensive analysis of rare coding variants across all genes of the genome and will contribute to a better understanding of the underlying disease mechanisms. To date, the number of WES studies in AMD case-control cohorts remains scarce and sample sizes are limited. To scrutinize the role of rare protein-altering variants in AMD cause, we performed the largest WES study in AMD to date in a large European cohort consisting of 1125 AMD patients and 1361 control participants. Design: Genome-wide case-control association study of WES data. Participants: One thousand one hundred twenty-five AMD patients and 1361 control participants. Methods: A single variant association test of WES data was performed to detect variants that are associated individually with AMD. The cumulative effect of multiple rare variants with 1 gene was analyzed using a gene-based CMC burden test. Immunohistochemistry was performed to determine the localization of the Col8a1 protein in mouse eyes. Main Outcome Measures: Genetic variants associated with AMD. Results: We detected significantly more rare protein-altering variants in the COL8A1 gene in patients (22/2250 alleles [1.0%]) than in control participants (11/2722 alleles [0.4%]; P = 7.07×10–5). The association of rare variants in the COL8A1 gene is independent of the common intergenic variant (rs140647181) near the COL8A1 gene previously associated with AMD. We demonstrated that the Col8a1 protein localizes at Bruch's membrane. Conclusions: This study supported a role for protein-altering variants in the COL8A1 gene in AMD pathogenesis. We demonstrated the presence of Col8a1 in Bruch's membrane, further supporting the role of COL8A1 variants in AMD pathogenesis. Protein-altering variants in COL8A1 may alter the integrity of Bruch's membrane, contributing to the accumulation of drusen and the development of AMD

    A comparison of genotyping arrays

    No full text
    Array technology to genotype single-nucleotide variants (SNVs) is widely used in genome-wide association studies (GWAS), clinical diagnostics, and linkage studies. Arrays have undergone a tremendous growth in both number and content over recent years making a comprehensive comparison all the more important. We have compared 28 genotyping arrays on their overall content, genome-wide coverage, imputation quality, presence of known GWAS loci, mtDNA variants and clinically relevant genes (i.e., American College of Medical Genetics (ACMG) actionable genes, pharmacogenetic genes, human leukocyte antigen (HLA) genes and SNV density). Our comparison shows that genome-wide coverage is highly correlated with the number of SNVs on the array but does not correlate with imputation quality, which is the main determinant of GWAS usability. Average imputation quality for all tested arrays was similar for European and African populations, indicating that this is not a good criterion for choosing a genotyping array. Rather, the additional content on the array, such as pharmacogenetics or HLA variants, should be the deciding factor. As the research question of a study will in large part determine which class of genes are of interest, there is not just one perfect array for all different research questions. This study can thus help as a guideline to determine which array best suits a study’s requirements.</p

    Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood

    Get PDF
    Understanding the difference in genetic regulation of gene expression between brain and blood is important for discovering genes for brain-related traits and disorders. Here, we estimate the correlation of genetic effects at the top-associated cis-expression or -DNA methylation (DNAm) quantitative trait loci (cis-eQTLs or cis-mQTLs) between brain and blood (r b ). Using publicly available data, we find that genetic effects at the top cis-eQTLs or mQTLs are highly correlated between independent brain and blood samples (r b = 0.70 for cis-eQTLs and r ^ b = 0.78 for cis-mQTLs). Using meta-analyzed brain cis-eQTL/mQTL data (n = 526 to 1194), we identify 61 genes and 167 DNAm sites associated with four brain-related phenotypes, most of which are a subset of the discoveries (97 genes and 295 DNAm sites) using data from blood with larger sample sizes (n = 1980 to 14,115). Our results demonstrate the gain of power in gene discovery for brain-related phenotypes using blood cis-eQTL/mQTL data with large sample sizes. © 2018 The Author(s).Peer reviewe
    corecore