1,776 research outputs found
The dynamics of a low-order coupled ocean-atmosphere model
A system of five ordinary differential equations is studied which combines
the Lorenz-84 model for the atmosphere and a box model for the ocean. The
behaviour of this system is studied as a function of the coupling parameters.
For most parameter values, the dynamics of the atmosphere model is dominant.
For a range of parameter values, competing attractors exist. The Kaplan-Yorke
dimension and the correlation dimension of the chaotic attractor are
numerically calculated and compared to the values found in the uncoupled Lorenz
model. In the transition from periodic behaviour to chaos intermittency is
observed. The intermittent behaviour occurs near a Neimark-Sacker bifurcation
at which a periodic solution loses its stability. The length of the periodic
intervals is governed by the time scale of the ocean component. Thus, in this
regime the ocean model has a considerable influence on the dynamics of the
coupled system.Comment: 20 pages, 15 figures, uses AmsTex, Amssymb and epsfig package.
Submitted to the Journal of Nonlinear Scienc
Substance Use and Depression Symptomatology: Measurement Invariance of the Beck Depression Inventory (BDI-II) among Non-Users and Frequent-Users of Alcohol, Nicotine and Cannabis
Depression is a highly heterogeneous condition, and identifying how symptoms present in various groups may greatly increase our understanding of its etiology. Importantly, Major Depressive Disorder is strongly linked with Substance Use Disorders, which may ameliorate or exacerbate specific depression symptoms. It is therefore quite plausible that depression may present with different symptom profiles depending on an individual’s substance use status. Given these observations, it is important to examine the underlying construct of depression in groups of substance users compared to non-users. In this study we use a non-clinical sample to examine the measurement structure of the Beck Depression Inventory (BDI-II) in non-users and frequent-users of various substances. Specifically, measurement invariance was examined across those who do vs. do not use alcohol, nicotine, and cannabis. Results indicate strict factorial invariance across non-users and frequent-users of alcohol and cannabis, and metric invariance across non-users and frequent-users of nicotine. This implies that the factor structure of the BDI-II is similar across all substance use groups
Non-thermal nuclear magnetic resonance quantum computing using hyperpolarized Xenon
Current experiments in liquid-state nuclear magnetic resonance quantum
computing are limited by low initial polarization. To address this problem, we
have investigated the use of optical pumping techniques to enhance the
polarization of a 2-qubit NMR quantum computer (13C and 1H in 13CHCl3). To
efficiently use the increased polarization, we have generalized the procedure
for effective pure state preparation. With this new, more flexible scheme, an
effective pure state was prepared with polarization-enhancement of a factor of
10 compared to the thermal state. An implementation of Grover's quantum search
algorithm was demonstrated using this new technique.Comment: 4 pages, 3 figures. Submitted for publicatio
Perturbative behaviour of a vortex in a trapped Bose-Einstein condensate
We derive a set of equations that describe the shape and behaviour of a
single perturbed vortex line in a Bose-Einstein condensate. Through the use of
a matched asymptotic expansion and a unique coordinate transform a relation for
a vortex's velocity, anywhere along the line, is found in terms of the
trapping, rotation, and distortion of the line at that location. This relation
is then used to find a set of differential equations that give the line's
specific shape and motion. This work corrects a previous similar derivation by
Anatoly A. Svidzinsky and Alexander L. Fetter [Phys. Rev. A \textbf{62}, 063617
(2000)], and enables a comparison with recent numerical results.Comment: 12 pages with 3 figure
Thermal preference of Culicoides biting midges in laboratory and semi-field settings
Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are hematophagous insects, and some species can transmit a plethora of pathogens, e.g., bluetongue virus and African horse sickness virus, that mainly affect animals. The transmission of vector-borne pathogens is strongly temperature dependent, and recent studies pointed to the importance of including microclimatic data when modelling disease spread. However, little is known about the preferred temperature of biting midges. The present study addressed the thermal selection of field-caught Culicoides with two experiments. In a laboratory setup, sugar-fed or blood-fed midges were video tracked for 15 min while moving inside a 60 × 30 × 4 cm setup with a 15-25 °C temperature gradient. Culicoides spent over double the time in the coldest zone of the setup compared to the warmest one. This cold selection was significantly stronger for sugar-fed individuals. Calculated preferred temperatures were 18.3 °C and 18.9 °C for sugar-fed and blood-fed Culicoides, respectively. The effect of temperature on walking speed was significant but weak, indicating that their skewed distribution results from preference and not cold trapping. A second experiment consisted of a two-way-choice-setup, performed in a 90 × 45 × 45 cm net cage, placed outdoors in a sheltered environment. Two UV LED CDC traps were placed inside the setup, and a mean temperature difference of 2.2 °C was created between the two traps. Hundred-fifty Culicoides were released per experiment. Recapture rates were negatively correlated with ambient temperature and were on average three times higher in the cooled trap. The higher prevalence of biting midges in cooler environments influences fitness and ability to transmit pathogens and should be considered in models that predict Culicoides disease transmission
Hamiltonian formulation of nonequilibrium quantum dynamics: geometric structure of the BBGKY hierarchy
Time-resolved measurement techniques are opening a window on nonequilibrium
quantum phenomena that is radically different from the traditional picture in
the frequency domain. The simulation and interpretation of nonequilibrium
dynamics is a conspicuous challenge for theory. This paper presents a novel
approach to quantum many-body dynamics that is based on a Hamiltonian
formulation of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of
equations of motion for reduced density matrices. These equations have an
underlying symplectic structure, and we write them in the form of the classical
Hamilton equations for canonically conjugate variables. Applying canonical
perturbation theory or the Krylov-Bogoliubov averaging method to the resulting
equations yields a systematic approximation scheme. The possibility of using
memory-dependent functional approximations to close the Hamilton equations at a
particular level of the hierarchy is discussed. The geometric structure of the
equations gives rise to reduced geometric phases that are observable even for
noncyclic evolutions of the many-body state. The formalism is applied to a
finite Hubbard chain which undergoes a quench in on-site interaction energy U.
Canonical perturbation theory, carried out to second order, fully captures the
nontrivial real-time dynamics of the model, including resonance phenomena and
the coupling of fast and slow variables.Comment: 17 pages, revise
Fetching marked items from an unsorted database in NMR ensemble computing
Searching a marked item or several marked items from an unsorted database is
a very difficult mathematical problem. Using classical computer, it requires
steps to find the target. Using a quantum computer, Grover's
algorithm uses steps. In NMR ensemble computing,
Brushweiler's algorithm uses steps. In this Letter, we propose an
algorithm that fetches marked items in an unsorted database directly. It
requires only a single query. It can find a single marked item or multiple
number of items.Comment: 4 pages and 1 figur
- …