562 research outputs found

    Erratum: Is it possible to infer the equation of state of a mixture of hard discs from that of the one-component system?

    Full text link
    The numerical values in the sixth and seventh columns of table 1 of the paper Molec. Phys., 1999, 96, 1185-1188 are not correct. Consequently, some of the comments made in the paper are wrong. The corrected version of table 1 is reprinted here and the results are briefly discussed.Comment: 2 pages; Erratum to Molec. Phys., 1999, 96, 1185-1188; to be published in Molec. Phy

    Ion Thruster Development at NASA Lewis Research Center

    Get PDF
    Recent ion propulsion technology efforts at NASA's Lewis Research Center including development of kW-class xenon ion thrusters, high power xenon and krypton ion thrusters, and power processors are reviewed. Thruster physical characteristics, performance data, life projections, and power processor component technology are summarized. The ion propulsion technology program is structured to address a broad set of mission applications from satellite stationkeeping and repositioning to primary propulsion using solar or nuclear power systems

    Dynamic concentration of motors in microtubule arrays

    Full text link
    We present experimental and theoretical studies of the dynamics of molecular motors in microtubule arrays and asters. By solving a convection-diffusion equation we find that the density profile of motors in a two-dimensional aster is characterized by continuously varying exponents. Simulations are used to verify the assumptions of the continuum model. We observe the concentration profiles of kinesin moving in quasi two-dimensional artificial asters by fluorescent microscopy and compare with our theoretical results.Comment: 4pages, 4 figures revte

    Utilizing FEM-Software to quantify pre- and post-interventional cardiac reconstruction data based on modelling data sets from surgical ventricular repair therapy (SVRT) and cardiac resynchronisation therapy (CRT)

    Get PDF
    BACKGROUND: Left ventricle (LV) 3D structural data can be easily obtained using standard transesophageal echocardiography (TEE) devices but quantitative pre- and intraoperative volumetry and geometry analysis of the LV is presently not feasible in the cardiac operation room (OR). Finite element method (FEM) modelling is necessary to carry out precise and individual volume analysis and in the future will form the basis for simulation of cardiac interventions. METHOD: A Philips/HP Sonos 5500 ultrasound device stores volume data as time-resolved 4D volume data sets. In this prospective study TomTec LV Analysis TEE(© )Software was used for semi-automatic endocardial border detection, reconstruction, and volume-rendering of the clinical 3D echocardiographic data. With the software FemCoGen(© )a quantification of partial volumes and surface directions of the LV was carried out for two patients data sets. One patient underwent surgical ventricular repair therapy (SVR) and the other a cardiac resynchronisation therapy (CRT). RESULTS: For both patients a detailed volume and surface direction analysis is provided. Partial volumes as well as normal directions to the LV surface are pre- and post-interventionally compared. CONCLUSION: The operation results for both patients are quantified. The quantification shows treatment details for both interventions (e.g. the elimination of the discontinuities for CRT intervention and the segments treated for SVR intervention). The LV quantification is feasible in the cardiac OR and it gives a detailed and immediate quantitative feedback of the quality of the intervention to the medical

    Recommendations for ICT use in Alzheimer's Disease assessment: Monaco CTAD expert meeting

    Get PDF
    International audienceAlzheimer disease (AD) and other related dementia represent a major challenge for health care systems within the aging population. It is therefore important to develop better instruments for assessing disease severity and disease progression to optimize patient's care and support to care provide rs, and also provide better tools for clinical research. In this area, Information and Communication Technologies (ICT) are of particular interest. Such techniques enable accurate and standardized assessments of patients' performance and actions in real time and real life situations. The aim of this article is to provide basic recommendation concerning the development and the use of ICT for Alzheimer's disease and related disorders. During he ICT and Mental Health workshop (CTAD meeting held in Monaco on the 30th October 2012) an expert panel was set up to prepare the first recommendations for the use of ICT in dementia research. The expert panel included geriatrician, epidemiologist, neurologist, psychiatrist, psychologist, ICT engineers, representatives from the industry and patient association. The recommendations are divided into three sections corresponding to 1/ the clinical targets of interest for the use of ICT, 2/ the cond itions, the type of sensors and the outputs (scores) that could be used and obtained, 3/ finally the last section concerns specifically the use of ICT within clinical trials

    Modifiable Risk Factors Explain Socioeconomic Inequalities in Dementia Risk: Evidence from a Population-Based Prospective Cohort Study

    Get PDF
    BACKGROUND: Differences in dementia risk across the gradient of socioeconomic status (SES) exist, but their determinants are not well understood. OBJECTIVE: This study investigates whether health conditions and lifestyle-related risk factors explain the SES inequalities in dementia risk. METHODS: 6,346 participants from the English Longitudinal Study of Ageing were followed up from 2008/2009 until 2014/2015. We used Cox regression adjusted for age, gender, wealth/education, and clustering at the household level to examine the association between SES markers (wealth, education) and time to dementia in a structural equation model including potential mediation or effect modification by a weighted compound score of twelve modifiable risk and protective factors for dementia (‘LIfestyle for BRAin health’ (LIBRA) score). RESULTS: During a median follow-up of 6 years, 192 individuals (3.0%) developed dementia. LIBRA scores decreased with increasing wealth and higher educational level. A one-point increase in the LIBRA score was associated with a 13% increase in dementia risk (hazard ratio (HR) = 1.13, 95% confidence interval 1.07–1.19). Higher wealth was associated with a decreased dementia risk (HR = 0.58, 0.39–0.85). Mediation analysis showed that 52% of the risk difference between the highest and lowest wealth tertile was mediated by differences in LIBRA (indirect effect: HR = 0.75, 0.66–0.85). Education was not directly associated with dementia (HR = 1.05, 0.69–1.59), but was a distal risk factor for dementia by explaining differences in wealth and LIBRA scores (indirect effect high education: HR = 0.92, 0.88–0.95). CONCLUSION: Socioeconomic differences in dementia risk can be partly explained by differences in modifiable health conditions and lifestyle factors

    Finite-element-method (FEM) model generation of time-resolved 3D echocardiographic geometry data for mitral-valve volumetry

    Get PDF
    INTRODUCTION: Mitral Valve (MV) 3D structural data can be easily obtained using standard transesophageal echocardiography (TEE) devices but quantitative pre- and intraoperative volume analysis of the MV is presently not feasible in the cardiac operation room (OR). Finite element method (FEM) modelling is necessary to carry out precise and individual volume analysis and in the future will form the basis for simulation of cardiac interventions. METHOD: With the present retrospective pilot study we describe a method to transfer MV geometric data to 3D Slicer 2 software, an open-source medical visualization and analysis software package. A newly developed software program (ROIExtract) allowed selection of a region-of-interest (ROI) from the TEE data and data transformation for use in 3D Slicer. FEM models for quantitative volumetric studies were generated. RESULTS: ROI selection permitted the visualization and calculations required to create a sequence of volume rendered models of the MV allowing time-based visualization of regional deformation. Quantitation of tissue volume, especially important in myxomatous degeneration can be carried out. Rendered volumes are shown in 3D as well as in time-resolved 4D animations. CONCLUSION: The visualization of the segmented MV may significantly enhance clinical interpretation. This method provides an infrastructure for the study of image guided assessment of clinical findings and surgical planning. For complete pre- and intraoperative 3D MV FEM analysis, three input elements are necessary: 1. time-gated, reality-based structural information, 2. continuous MV pressure and 3. instantaneous tissue elastance. The present process makes the first of these elements available. Volume defect analysis is essential to fully understand functional and geometrical dysfunction of but not limited to the valve. 3D Slicer was used for semi-automatic valve border detection and volume-rendering of clinical 3D echocardiographic data. FEM based models were also calculated. METHOD: A Philips/HP Sonos 5500 ultrasound device stores volume data as time-resolved 4D volume data sets. Data sets for three subjects were used. Since 3D Slicer does not process time-resolved data sets, we employed a standard movie maker to animate the individual time-based models and visualizations. Calculation time and model size were minimized. Pressures were also easily available. We speculate that calculation of instantaneous elastance may be possible using instantaneous pressure values and tissue deformation data derived from the animated FEM

    Plasma contactor technology for Space Station Freedom

    Get PDF
    Hollow cathode plasma contactors were baselined for Space Station Freedom (SSF) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and in particular the technology development effort on ion thruster systems. Specific efforts include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contact or subsystems include the plasma contact or unit, a power electronics unit, and an expellant management unit. Under this program these will all be brought to breadboard and engineering model development status. New test facilities were developed, and existing facilities were augmented, to support characterizations and life testing of contactor components and systems. The magnitude, scope, and status of the plasma contactor hardware development program now underway and preliminary test results on system components are discussed

    Associations of Advanced Glycation End-Products With Cognitive Functions in Individuals With and Without Type 2 Diabetes: The Maastricht Study

    Get PDF
    Context: Advanced glycation end-products (AGEs) are thought to be involved in the pathogenesis of Alzheimer's disease. AGEs are products resulting from nonenzymatic chemical reactions between reduced sugars and proteins, which accumulate during natural aging, and their accumulation is accelerated in hyperglycemic conditions such as type 2 diabetes mellitus. Objective: The objective of the study was to examine associations between AGEs and cognitive functions. Design, Setting, and Participants: This study was performed as part of the Maastricht Study, a population-based cohort study in which, by design, 215 participants (28.1%) had type 2 diabetes mellitus. Main Outcome Measures: We examined associations of skin autofluorescence (SAF) (n = 764), an overall estimate of skin AGEs, and specific plasma protein-bound AGEs (n = 781) with performance on tests for global cognitive functioning, information processing speed, verbal memory (immediate and delayed word recall), and response inhibition. Results: After adjustment for demographics, diabetes, smoking, alcohol, waist circumference, total cholesterol/high-density lipoprotein cholesterol ratio, triglycerides, and lipid-lowering medication use, higher SAF was significantly associated with worse delayed word recall (regression coefficient, b = - 0.44; P = .04), and response inhibition (b = 0.03; P = .04). After further adjustment for systolic blood pressure, cardiovascular disease, estimated glomerular filtration rate, and depression, associations were attenuated (delayed word recall, b = - 0.38, P = .07; response inhibition, b = 0.02, P = .07). Higher pentosidine levels were associated with worse global cognitive functioning (b = - 0.61; P = .04) after full adjustment, but other plasma AGEs were not. Associations did not differ between individuals with and without diabetes. Conclusion: We found inverse associations of SAF (a noninvasive marker for tissue AGEs) with cognitive performance, which were attenuated after adjustment for vascular risk factors and depression

    A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions

    Get PDF
    BACKGROUND: Laser Interstitial ThermoTherapy (LITT) is a well established surgical method. The use of LITT is so far limited to homogeneous tissues, e.g. the liver. One of the reasons is the limited capability of existing treatment planning models to calculate accurately the damage zone. The treatment planning in inhomogeneous tissues, especially of regions near main vessels, poses still a challenge. In order to extend the application of LITT to a wider range of anatomical regions new simulation methods are needed. The model described with this article enables efficient simulation for predicting damaged tissue as a basis for a future laser-surgical planning system. Previously we described the dependency of the model on geometry. With the presented paper including two video files we focus on the methodological, physical and mathematical background of the model. METHODS: In contrast to previous simulation attempts, our model is based on finite element method (FEM). We propose the use of LITT, in sensitive areas such as the neck region to treat tumours in lymph node with dimensions of 0.5 cm – 2 cm in diameter near the carotid artery. Our model is based on calculations describing the light distribution using the diffusion approximation of the transport theory; the temperature rise using the bioheat equation, including the effect of microperfusion in tissue to determine the extent of thermal damage; and the dependency of thermal and optical properties on the temperature and the injury. Injury is estimated using a damage integral. To check our model we performed a first in vitro experiment on porcine muscle tissue. RESULTS: We performed the derivation of the geometry from 3D ultrasound data and show for this proposed geometry the energy distribution, the heat elevation, and the damage zone. Further on, we perform a comparison with the in-vitro experiment. The calculation shows an error of 5% in the x-axis parallel to the blood vessel. CONCLUSIONS: The FEM technique proposed can overcome limitations of other methods and enables an efficient simulation for predicting the damage zone induced using LITT. Our calculations show clearly that major vessels would not be damaged. The area/volume of the damaged zone calculated from both simulation and in-vitro experiment fits well and the deviation is small. One of the main reasons for the deviation is the lack of accurate values of the tissue optical properties. In further experiments this needs to be validated
    corecore