65 research outputs found

    Identification of anti-proliferative kinase inhibitors as potential therapeutic agents to treat canine osteosarcoma

    Get PDF
    Osteosarcoma is the most common primary bone tumour in dogs but various forms of therapy have not significantly improved clinical outcomes. As dysregulation of kinase activity is often present in tumours, kinases represent attractive molecular targets for cancer therapy. The purpose of this study was to identify novel compounds targeting kinases with the potential to induce cell death in a panel of canine osteosarcoma cell lines. The ability of 80 well-characterized kinase inhibitor compounds to inhibit the proliferation of four canine osteosarcoma cell lines was investigated in vitro. For those compounds with activity, the mechanism of action and capability to potentiate the activity of doxorubicin was further evaluated. The screening showed 22 different kinase inhibitors that induced significant anti-proliferative effects across the four canine osteosarcoma cell lines investigated. Four of these compounds (RO 31-8220, 5-iodotubercidin, BAY 11-7082 and an erbstatin analog) showed significant cell growth inhibitory effects across all cell lines in association with variable induction of apoptosis. RO 31-8220 and 5-iodotubercidin showed the highest ability to potentiate the effects of doxorubicin on cell viability. In conclusion, the present study identified several potent kinase inhibitors targeting the PKC, CK1, PKA, ErbB2, mTOR and NF-κB pathways, which may warrant further investigations for the treatment of osteosarcoma in dogs

    Wild and domestic animals variably display Neu5Ac and Neu5Gc sialic acids

    Get PDF
    Sialic acids are used as a receptor by several viruses and variations in the linkage type or C-5 modifications affect the binding properties. A species barrier for multiple viruses is present due to α2,3- or α2,6-linked sialic acids. The C-5 position of the sialic acid can be modified to form N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc), which acts as a determinant for host susceptibility for pathogens such as influenza A virus, rotavirus, and transmissible gastroenteritis coronavirus. Neu5Gc is present in most mammals such as pigs and horses but is absent in humans, ferrets, and dogs. However, little is known about C-5 content in wildlife species or how many C-5 modified sialic acids are present on N-linked glycans or glycolipids. Using our previously developed tissue microarray system, we investigated how 2 different lectins specific for Neu5Gc can result in varying detection levels of Neu5Gc glycans. We used these lectins to map Neu5Gc content in wild Suidae, Cervidae, tigers, and European hedgehogs. We show that Neu5Gc content is highly variable among different species. Furthermore, the removal of N-linked glycans reduces the binding of both Neu5Gc lectins while retention of glycolipids by omitting methanol treatment of tissues increases lectin binding. These findings highlight the importance of using multiple Neu5Gc lectins as the rich variety in which Neu5Gc is displayed can hardly be detected by a single lectin

    Mouse Hepatitis Coronavirus RNA Replication Depends on GBF1-Mediated ARF1 Activation

    Get PDF
    Coronaviruses induce in infected cells the formation of double membrane vesicles, which are the sites of RNA replication. Not much is known about the formation of these vesicles, although recent observations indicate an important role for the endoplasmic reticulum in the formation of the mouse hepatitis coronavirus (MHV) replication complexes (RCs). We now show that MHV replication is sensitive to brefeldin A (BFA). Consistently, expression of a dominant-negative mutant of ARF1, known to mimic the action of the drug, inhibited MHV infection profoundly. Immunofluorescence analysis and quantitative electron microscopy demonstrated that BFA did not block the formation of RCs per se, but rather reduced their number. MHV RNA replication was not sensitive to BFA in MDCK cells, which are known to express the BFA-resistant guanine nucleotide exchange factor GBF1. Accordingly, individual knockdown of the Golgi-resident targets of BFA by transfection of small interfering RNAs (siRNAs) showed that GBF1, but not BIG1 or BIG2, was critically involved in MHV RNA replication. ARF1, the cellular effector of GBF1, also appeared to be involved in MHV replication, as siRNAs targeting this small GTPase inhibited MHV infection significantly. Collectively, our results demonstrate that GBF1-mediated ARF1 activation is required for efficient MHV RNA replication and reveal that the early secretory pathway and MHV replication complex formation are closely connected

    Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner

    Get PDF
    Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs). Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV). Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion

    Glycosylation of the viral attachment protein of avian coronavirus is essential for host cell and receptor binding

    No full text
    Avian coronaviruses, including infectious bronchitis virus (IBV), are important respiratory pathogens of poultry. The heavily glycosylated IBV spike protein is responsible for binding to host tissues. Glycosylation sites in the spike protein are highly conserved across viral genotypes, suggesting an important role for this modification in the virus life cycle. Here, we analyzed the N-glycosylation of the receptor-binding domain (RBD) of IBV strain M41 spike protein and assessed the role of this modification in host receptor binding. Ten single Asn-to-Ala substitutions at the predicted N-glycosylation sites of the M41-RBD were evaluated along with two control Val-to-Ala substitutions. CD analysis revealed that the secondary structure of all variants was retained compared with the unmodified M41-RBD construct. Six of the ten glycosylation variants lost binding to chicken trachea tissue and an ELISA-presented α2,3-linked sialic acid oligosaccharide ligand. LC/MSE glycomics analysis revealed that glycosylation sites have specific proportions of N-glycan subtypes. Overall glycosylation patterns of most variant RBDs were highly similar to those of the unmodified M41-RBD construct. In silico docking experiments with the recently published cryo-EM structure of the M41 IBV spike protein and our glycosylation results revealed a potential ligand receptor site that is ringed by four glycosylation sites that dramatically impact ligand binding. Combined with the results of previous array studies, the glycosylation and mutational analyses presented here suggest a unique glycosylation-dependent binding modality for the M41 spike protein

    Three Amino Acid Changes In Avian Coronavirus Spike Protein Allows Binding To Kidney Tissue

    No full text
    Infectious bronchitis virus (IBV) infects ciliated epithelial cells in the chicken respiratory tract. While some IBV strains replicate locally, others can disseminate to various organs, including the kidney. Here we elucidate the determinants for kidney tropism by studying interactions between the receptor binding domain (RBD) of the viral attachment protein spike from two IBV strains with different tropisms. Recombinantly produced RBDs from the nephropathogenic IBV strain QX and from the non-nephropathogenic strain M41 bound to the epithelial cells of the trachea. In contrast, only QX-RBD binds more extensively to cells of the digestive tract, urogenital tract, and kidneys. While removal of sialic acids from tissues prevented binding of all proteins to all tissues, binding of QX-RBD to trachea and kidney could not be blocked by pre-incubation with synthetic alpha-2,3-linked sialic acids. The lack of binding of QX-RBD to a previously identified IBV-M41 receptor was confirmed by ELISA, demonstrating that tissue binding of QX-RBD is dependent on a different sialylated glycan receptor. Using chimeric RBD proteins, we discovered that the region encompassing amino acids 99-159 of QX-RBD was required to establish kidney binding. In particular, QX-RBD amino acids 110-112 (KIP) were sufficient to render IBV-M41 with the ability to bind to kidney, while the reciprocal mutations in IBV-QX abolished kidney binding completely. Structural analysis of both RBDs suggests that the receptor binding site for QX is located at a different location on the spike than that of M41.Importance: Infectious bronchitis virus is the causative agent of Infectious bronchitis in chickens. Upon infection of chicken flocks, the poultry industry faces substantial economic losses by diminished egg quality and increased morbidity and mortality of infected animals. While all IBV strains infect the chicken respiratory tract via the ciliated epithelial layer of the trachea, some strains can also replicate in the kidneys, dividing IBV in two pathotypes: non-nephropathogenic (example IBV-M41) and nephropathogenic viruses (including IBV-QX). Here we set out to identify the determinants for the extended nephropathogenic tropism of IBV-QX. Our data reveal that each pathotype makes use of a different sialylated glycan ligand, with binding sites on opposite sides of the attachment protein. This knowledge should facilitate the design of antivirals to prevent coronavirus infections in the field

    Tissue Microarrays to Visualize Influenza D Attachment to Host Receptors in the Respiratory Tract of Farm Animals

    Get PDF
    The trimeric hemagglutinin-esterase fusion protein (HEF) of influenza D virus (IDV) binds 9-O-acetylated sialic acid receptors, which are expressed in various host species. While cattle are the main reservoir for IDV, the viral genome has also been detected in domestic pigs. In addition, antibodies against IDV have been detected in other farm animals such as sheep, goats, and horses, and even in farmers working with IDV positive animals. Viruses belonging to various IDV clades circulate, but little is known about their differences in host and tissue tropism. Here we used recombinantly produced HEF proteins (HEF S57A) from the major clades D/Oklahoma (D/OK) and D/Oklahoma/660 (D/660) to study their host and tissue tropism and receptor interactions. To this end, we developed tissue microarrays (TMA) composed of respiratory tissues from various farm animals including cattle, domestic pigs, sheep, goats, and horses. Protein histochemical staining of farm animal respiratory tissue-microarrays with HEF proteins showed that cattle have receptors present over the entire respiratory tract while receptors are only present in the nasal and pharyngeal epithelium of pigs, sheep, goats, and horses. No differences in tropism for tissues and animals were observed between clades, while hemagglutination assays showed that D/OK has a 2-fold higher binding affinity than D/660 for receptors on red blood cells. The removal of O-acetylation from receptors via saponification treatment confirmed that receptor-binding of both clades was dependent on O-acetylated sialic acids

    Enhanced human-type receptor binding by ferret transmissible H5N1 with a K193T mutation

    No full text
    All human influenza pandemics have originated from avian influenza viruses. Although multiple changes are needed for an avian virus to be able to transmit between humans, binding to human-type receptors is essential. Several research groups have reported mutations in H5N1 viruses that exhibit specificity to human-type receptors and promote respiratory droplet transmission between ferrets. Upon detailed analysis we have found that these mutants exhibit significant differences in fine receptor specificity compared to human H1N1 and H3N2 and retain avian-type receptor binding. We have recently shown that human influenza viruses preferentially bind to α2-6 sialylated branched N-linked glycans, where the sialic acids on each branch can bind to receptor sites on two protomers of the same HA trimer. In this binding mode the glycan projects over the 190-helix at the top of the receptor-binding pocket, which in H5N1 would create stearic clash with lysine at 193. Thus we hypothesized that a K193T mutation, would improve binding to branched N-linked receptors. Indeed, adding the K193T mutation to the H5 HA of a respiratory droplet transmissible virus dramatically improves both binding to human trachea epithelial cells and specificity for extended α2-6 sialylated N-linked glycans recognized by human influenza viruses

    Coronaviruses Hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication

    Get PDF
    Coronaviruses (CoV), including SARS and mouse hepatitis virus (MHV), are enveloped RNA viruses that induce formation of double-membrane vesicles (DMVs) and target their replication and transcription complexes (RTCs) on the DMV-limiting membranes. The DMV biogenesis has been connected with the early secretory pathway. CoV-induced DMVs, however, lack conventional endoplasmic reticulum (ER) or Golgi protein markers, leaving their membrane origins in question. We show that MHV co-opts the host cell machinery for COPII-independent vesicular ER export of a short-living regulator of ER-associated degradation (ERAD), EDEM1, to derive cellular membranes for replication. MHV infection causes accumulation of EDEM1 and OS-9, another short-living ER chaperone, in the DMVs. DMVs are coated with the nonlipidated LC3/Atg8 autophagy marker. Downregulation of LC3, but not inactivation of host cell autophagy, protects cells from CoV infection. Our study identifies the host cellular pathway hijacked for supplying CoV replication membranes and describes an autophagy-independent role for nonlipidated LC3-I

    Host tissue and glycan binding specificities of avian viral attachment proteins using novel avian tissue microarrays

    No full text
    The initial interaction between viral attachment proteins and the host cell is a critical determinant for the susceptibility of a host for a particular virus. To increase our understanding of avian pathogens and the susceptibility of poultry species, we developed novel avian tissue microarrays (TMAs). Tissue binding profiles of avian viral attachment proteins were studied by performing histochemistry on multi-species TMA, comprising of selected tissues from ten avian species, and single-species TMAs, grouping organ systems of each species together. The attachment pattern of the hemagglutinin protein was in line with the reported tropism of influenza virus H5N1, confirming the validity of TMAs in profiling the initial virus-host interaction. The previously believed chicken-specific coronavirus (CoV) M41 spike (S1) protein displayed a broad attachment pattern to respiratory tissues of various avian species, albeit with lower affinity than hemagglutinin, suggesting that other avian species might be susceptible for chicken CoV. When comparing tissue-specific binding patterns of various avian coronaviral S1 proteins on the single-species TMAs, chicken and partridge CoV S1 had predominant affinity for the trachea, while pigeon CoV S1 showed marked preference for lung of their respective hosts. Binding of all coronaviral S1 proteins was dependent on sialic acids; however, while chicken CoV S1 preferred sialic acids type I lactosamine (Gal(1-3)GlcNAc) over type II (Gal(1-4)GlcNAc), the fine glycan specificities of pigeon and partridge CoVs were different, as chicken CoV S1-specific sialylglycopolymers could not block their binding to tissues. Taken together, TMAs provide a novel platform in the field of infectious diseases to allow identification of binding specificities of viral attachment proteins and are helpful to gain insight into the susceptibility of host and organ for avian pathogens
    corecore