112 research outputs found

    Initial Considerations Before Designing a Promoter Construct.

    Get PDF
    Before designing a synthetic promoter, it can be helpful to think about its final application. Is the study purely an in vitro exercise in monitoring short-term promoter activity from an episomal vector, or does the promoter eventually need to be permanently active and be integrated into the genome or perhaps even to function in vivo? The final application will have a bearing on promoter design and vector of choice from the start of the study. In this chapter I highlight some of the vector attributes to consider and features that should be thought about

    Advancing donor management research: design and implementation of a large, randomized, placebo-controlled trial

    Get PDF
    BACKGROUND:Given the persistent shortage of organs for transplantation, new donor management strategies to improve both organ utilization and quality of procured organs are needed. Current management protocols for the care of the deceased donor before organ procurement are based on physiological rationale, experiential reasoning, and retrospective studies without rigorous testing. Although many factors contribute to the lack of controlled clinical trials in donor management, a major factor is the unique challenges posed by research in the brain-dead organ donor.METHODS AND RESULTS:This article describes the study design and the challenges faced during implementation of the Beta-agonists for Oxygenation in Lung Donors (BOLD) study, a randomized, placebo-controlled clinical trial of nebulized albuterol vs. placebo in 500 organ donors. The study design and implementation are described with emphasis on aspects of the study that are unique to research in brain-dead organ donors.CONCLUSIONS:Experience gained during the design and implementation of the BOLD study should be useful for investigators planning future clinical trials in the brain-dead donor population and for intensivists who are involved in the care of the brain-dead organ donor.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    Expression of prostasin and its inhibitors during colorectal cancer carcinogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical trials where cancer patients were treated with protease inhibitors have suggested that the serine protease, prostasin, may act as a tumour suppressor. Prostasin is proteolytically activated by the serine protease, matriptase, which has a very high oncogenic potential. Prostasin is inhibited by protease nexin-1 (PN-1) and the two isoforms encoded by the mRNA splice variants of <it>hepatocyte growth factor activator inhibitor-1 </it>(<it>HAI-1</it>), <it>HAI-1A</it>, and <it>HAI-1B</it>.</p> <p>Methods</p> <p>Using quantitative RT-PCR, we have determined the mRNA levels for <it>prostasin </it>and <it>PN-1 </it>in colorectal cancer tissue (n = 116), severe dysplasia (n = 13), mild/moderate dysplasia (n = 93), and in normal tissue from the same individuals. In addition, corresponding tissues were examined from healthy volunteers (n = 23). A part of the cohort was further analysed for the mRNA levels of the two variants of HAI-1, here denoted <it>HAI-1A </it>and <it>HAI-1B</it>. mRNA levels were normalised to <it>β-actin</it>. Immunohistochemical analysis of prostasin and HAI-1 was performed on normal and cancer tissue.</p> <p>Results</p> <p>The mRNA level of prostasin was slightly but significantly decreased in both mild/moderate dysplasia (p < 0.001) and severe dysplasia (p < 0.01) and in carcinomas (p < 0.05) compared to normal tissue from the same individual. The mRNA level of <it>PN-1 </it>was more that two-fold elevated in colorectal cancer tissue as compared to healthy individuals (p < 0.001) and elevated in both mild/moderate dysplasia (p < 0.01), severe dysplasia (p < 0.05) and in colorectal cancer tissue (p < 0.001) as compared to normal tissue from the same individual. The mRNA levels of <it>HAI-1A </it>and <it>HAI-1B </it>mRNAs showed the same patterns of expression. Immunohistochemistry showed that prostasin is located mainly on the apical plasma membrane in normal colorectal tissue. A large variation was found in the degree of polarization of prostasin in colorectal cancer tissue.</p> <p>Conclusion</p> <p>These results show that the mRNA level of <it>PN-1 </it>is significantly elevated in colorectal cancer tissue. Future studies are required to clarify whether down-regulation of prostasin activity via up regulation of PN-1 is causing the malignant progression or if it is a consequence of it.</p

    A Cell Motility Screen Reveals Role for MARCKS-Related Protein in Adherens Junction Formation and Tumorigenesis

    Get PDF
    Invasion through the extracellular matrix (ECM) is important for wound healing, immunological responses and metastasis. We established an invasion-based cell motility screen using Boyden chambers overlaid with Matrigel to select for pro-invasive genes. By this method we identified antisense to MARCKS related protein (MRP), whose family member MARCKS is a target of miR-21, a microRNA involved in tumor growth, invasion and metastasis in multiple human cancers. We confirmed that targeted knockdown of MRP, in both EpRas mammary epithelial cells and PC3 prostate cancer cells, promoted in vitro cell migration that was blocked by trifluoperazine. Additionally, we observed increased immunofluoresence of E-cadherin, β-catenin and APC at sites of cell-cell contact in EpRas cells with MRP knockdown suggesting formation of adherens junctions. By wound healing assay we observed that reduced MRP supported collective cell migration, a type of cell movement where adherens junctions are maintained. However, destabilized adherens junctions, like those seen in EpRas cells, are frequently important for oncogenic signaling. Consequently, knockdown of MRP in EpRas caused loss of tumorigenesis in vivo, and reduced Wnt3a induced TCF reporter signaling in vitro. Together our data suggest that reducing MRP expression promotes formation of adherens junctions in EpRas cells, allowing collective cell migration, but interferes with oncogenic β-catenin signaling and tumorigenesis

    Effect of neutrophil elastase and its inhibitor EPI-hNE4 on transepithelial sodium transport across normal and cystic fibrosis human nasal epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyperactivity of the epithelial sodium (Na<sup>+</sup>) channel (ENaC) and increased Na<sup>+ </sup>absorption by airway epithelial cells leading to airway surface liquid dehydration and impaired mucociliary clearance are thought to play an important role in the pathogenesis of cystic fibrosis (CF) pulmonary disease. In airway epithelial cells, ENaC is constitutively activated by endogenous trypsin-like serine proteases such as Channel-Activating Proteases (CAPs). It was recently reported that ENaC activity could also be stimulated by apical treatment with human neutrophil elastase (hNE) in a human airway epithelial cell line, suggesting that hNE inhibition could represent a novel therapeutic approach for CF lung disease. However, whether hNE can also activate Na<sup>+ </sup>reabsorption in primary human nasal epithelial cells (HNEC) from control or CF patients is currently unknown.</p> <p>Methods</p> <p>We evaluated by short-circuit current (<it>I</it><sub>sc</sub>) measurements the effects of hNE and EPI-hNE4, a specific hNE inhibitor, on ENaC activity in primary cultures of HNEC obtained from control (9) and CF (4) patients.</p> <p>Results</p> <p>Neither hNE nor EPI-hNE4 treatments did modify <it>I</it><sub>sc </sub>in control and CF HNEC. Incubation with aprotinin, a Kunitz-type serine protease inhibitor that blocks the activity of endogenous CAPs, decreased <it>I</it><sub>sc </sub>by 27.6% and 54% in control and CF HNEC, respectively. In control and CF HNEC pretreated with aprotinin, hNE did significantly stimulate <it>I</it><sub>sc</sub>, an effect which was blocked by EPI-hNE4.</p> <p>Conclusions</p> <p>These results indicate that hNE does activate ENaC and transepithelial Na<sup>+ </sup>transport in both normal and CF HNEC, on condition that the activity of endogenous CAPs is first inhibited. The potent inhibitory effect of EPI-hNE4 on hNE-mediated ENaC activation observed in our experiments highlights that the use of EPI-hNE4 could be of interest to reduce ENaC hyperactivity in CF airways.</p

    Hepatocyte and keratinocyte growth factors and their receptors in human lung emphysema

    Get PDF
    BACKGROUND: Hepatocyte and keratinocyte growth factors are key growth factors in the process of alveolar repair. We hypothesized that excessive alveolar destruction observed in lung emphysema involves impaired expression of hepatocyte and keratinocyte growth factors or their respective receptors, c-met and keratinocyte growth factor receptor. The aim of our study was to compare the expression of hepatocyte and keratinocyte growth factors and their receptors in lung samples from 3 groups of patients: emphysema; smokers without emphysema and non-smokers without emphysema. METHODS: Hepatocyte and keratinocyte growth factor proteins were analysed by immunoassay and western blot; mRNA expression was measured by real time quantitative polymerase chain reaction. RESULTS: Hepatocyte and keratinocyte growth factors, c-met and keratinocyte growth factor receptor mRNA levels were similar in emphysema and non-emphysema patients. Hepatocyte growth factor mRNA correlated negatively with FEV1 and the FEV1/FVC ratio both in emphysema patients and in smokers with or without emphysema. Hepatocyte and keratinocyte growth factor protein concentrations were similar in all patients' groups. CONCLUSION: The expression of hepatocyte and keratinocyte growth factors and their receptors is preserved in patients with lung emphysema as compared to patients without emphysema. Hepatocyte growth factor mRNA correlates with the severity of airflow obstruction in smokers

    Modulators of Cytoskeletal Reorganization in CA1 Hippocampal Neurons Show Increased Expression in Patients at Mid-Stage Alzheimer's Disease

    Get PDF
    During the progression of Alzheimer's disease (AD), hippocampal neurons undergo cytoskeletal reorganization, resulting in degenerative as well as regenerative changes. As neurofibrillary tangles form and dystrophic neurites appear, sprouting neuronal processes with growth cones emerge. Actin and tubulin are indispensable for normal neurite development and regenerative responses to injury and neurodegenerative stimuli. We have previously shown that actin capping protein beta2 subunit, Capzb2, binds tubulin and, in the presence of tau, affects microtubule polymerization necessary for neurite outgrowth and normal growth cone morphology. Accordingly, Capzb2 silencing in hippocampal neurons resulted in short, dystrophic neurites, seen in neurodegenerative diseases including AD. Here we demonstrate the statistically significant increase in the Capzb2 expression in the postmortem hippocampi in persons at mid-stage, Braak and Braak stage (BB) III-IV, non-familial AD in comparison to controls. The dynamics of Capzb2 expression in progressive AD stages cannot be attributed to reactive astrocytosis. Moreover, the increased expression of Capzb2 mRNA in CA1 pyramidal neurons in AD BB III-IV is accompanied by an increased mRNA expression of brain derived neurotrophic factor (BDNF) receptor tyrosine kinase B (TrkB), mediator of synaptic plasticity in hippocampal neurons. Thus, the up-regulation of Capzb2 and TrkB may reflect cytoskeletal reorganization and/or regenerative response occurring in hippocampal CA1 neurons at a specific stage of AD progression
    corecore