4 research outputs found

    Fabrication of Multifunctional Electronic Textiles Using Oxidative Restructuring of Copper into a Cu-Based Metal–Organic Framework

    Get PDF
    This paper describes a novel synthetic approach for the conversion of zero-valent copper metal into a conductive two-dimensional layered metal–organic framework (MOF) based on 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) to form Cu3(HHTP)2. This process enables patterning of Cu3(HHTP)2 onto a variety of flexible and porous woven (cotton, silk, nylon, nylon/cotton blend, and polyester) and non-woven (weighing paper and filter paper) substrates with microscale spatial resolution. The method produces conductive textiles with sheet resistances of 0.1–10.1 MΩ/cm2, depending on the substrate, and uniform conformal coatings of MOFs on textile swatches with strong interfacial contact capable of withstanding chemical and physical stresses, such as detergent washes and abrasion. These conductive textiles enable simultaneous detection and detoxification of nitric oxide and hydrogen sulfide, achieving part per million limits of detection in dry and humid conditions. The Cu3(HHTP)2 MOF also demonstrated filtration capabilities of H2S, with uptake capacity up to 4.6 mol/kgMOF. X-ray photoelectron spectroscopy and diffuse reflectance infrared spectroscopy show that the detection of NO and H2S with Cu3(HHTP)2 is accompanied by the transformation of these species to less toxic forms, such as nitrite and/or nitrate and copper sulfide and Sx species, respectively. These results pave the way for using conductive MOFs to construct extremely robust electronic textiles with multifunctional performance characteristics

    Rational design of the molecular Ru-based Water Oxidation Catalysts

    Get PDF
    La divisió de l'aigua amb la llum solar és una de les estratègies més prometedores per obtenir combustibles renovables a curt i mig termini. Per aconseguir aquest objectiu, un dels elements crucials que han de comprendre i dominar per complet és l'oxidació catalítica de l'aigua a oxigen molecular. Fins ara s'han seguit dos principals enfocaments per al desenvolupament de catalitzadors d'oxidació d'aigua (abreujat WOC per les sigles de Water Oxidation Catalyst en anglès): els òxids i el mètode molecular. Aquest últim ha generat una gran quantitat d'informació mecanicista, basada principalment en complexos de Ru, i ha donat lloc a catalitzadors amb velocitats de dos ordres de magnitud superiors a les del centre natural generador d'oxigen en el fotosistema II de les plantes verdes i algues. Per tant, en aquesta tesi hem desenvolupat la química sintètica i catalítica relacionada amb complexos de Ru units a nous membres de la família de lligands FAME (acrònim de Flexible Adaptative Multidentate Equatorial en anglès, Flexible Adaptatiu Multidentat Equatorial en català). Els Capítols 1 i 2 es van dedicar a les motivacions i objectius dels presents estudis. En els Capítols 3 i 4 vam desenvolupar un nou WOC basat en Ru, l'anomenat complex Ru (tPa), on tPa és [2,2 :6 ,2 - terpiridina-6,6 - àcid difosfònic], que va mostrar una activitat significativa cap a la oxidació d'aigua, així com estudiem els efectes de la segona esfera de coordinació, els quals són responsables no només de generar el catalitzador actiu sinó també de reduir les energies d'activació en l’etapa limitant de la velocitat durant la catàlisi.La ruptura molecular del agua con la luz solar es una de las estrategias más prometedoras para obtener combustibles renovables a corto y medio plazo. Para lograr este objetivo, uno de los elementos cruciales que deben comprenderse y dominarse por completo es la oxidación catalítica del agua a oxígeno molecular. Hasta ahora se han seguido dos principales enfoques para el desarrollo de catalizadores de oxidación de agua (abreviado WOC por las siglas de Water Oxidation Catalyst en inglés): los óxidos y el método molecular. Este último ha generado una gran cantidad de información mecanístisca, basada principalmente en complejos de Ru, y ha dado lugar a catalizadores con velocidades dos órdenes de magnitud superiores a las del OEC (Oxygen-Evolving Complex en inglés) en el fotosistema II de las plantas verdes y algas. Por lo tanto, en esta tesis hemos desarrollado la química sintética y catalítica relacionada con complejos de Ru unidos a nuevos miembros de la familia de ligandos FAME (acrónimo de Flexible Adaptative Multidentate Equatorial en inglés, Flexible Adaptativo Multidentado Ecuatorial en español). Los capítulos 1 y 2 se dedicaron a las motivaciones y objetivos de los presentes estudios. En los Capítulos 3 y 4 desarrollamos un nuevo WOC basado en Ru, el llamado complejo Ru (tPa), donde tPa es [2,2 :6 ,2 - terpiridina-6,6 - ácido difosfónico], que mostró una actividad significativa hacia la oxidación de agua, así como estudiamos los efectos de la segunda esfera de coordinación,Water splitting with sunlight is one of the most promising strategies to obtain renewable fuels in the short to midterm. To achieve this goal one of the crucial elements that need to be fully understood and mastered is the catalytic oxidation of water to molecular oxygen. Two main approaches have been followed so far for the development of water oxidation catalysts (WOCs): the oxide and the molecular way. The latter has generated a wealth of mechanistic information mainly based on Ru complexes and has led to catalysts with turnover frequencies two orders of magnitude higher than those of OEC (Oxygen Evolving Center) in the photosystem II of green plants and algae. In this thesis, we developed the synthetic and catalytic chemistry related to Ru complexes bonded to new members of the family of FAME (Flexible Adaptative Multidentate Equatorial) ligands. Chapters 1 and 2 were dedicated to the motivations and objectives of the current studies. In Chapters 3 and 4 we developed a new Ru-based WOC, so-called Ru(tPa) complex, where tPa is [2,2 :6 ,2 -terpyridine-6,6 -diphosphonic acid], which showed significant activity toward water oxidation as well as how second coordination sphere effects are responsible not only to generate the active catalyst but also to reduce energies of activation at the rate-determining step of the catalysis. In Chapter 5 we found out the deactivation pathway that Ru(tPa) undergoes under heavy duty catalysis and in Chapter 6 we presented how to overcome this deactivation and improve stability

    Fate of the Molecular Ru–Phosphonate Water Oxidation Catalyst under Turnover Conditions

    No full text
    The present work uncovers the oxidative transformations of a recently reported polypyridyl phosphonate–phenoxo Ru-based water oxidation catalyst [RuIII(tPaO-κ-N2OPOC)(py)2]2–, 22– {tPaO5– is the 3-(hydroxo-[2,2′:6′,2″-terpyridine]-6,6″-diyl)bis(phosphonate)}, under turnover conditions. We show how the catalyst 22– suffers from oxidative degradation during water oxidation catalysis and generates the phosphonate–carboxylate Ru complex [RuII(Hbpc)(py)2], 3H, where bpc3– is 6′-phosphonato-[2,2′-bipyridine]-6-carboxylate. Complex 3H has been prepared by three different methods, and its oxidative transformations were also studied in detail. Under turnover conditions, complex 3H undergoes a series of transformations that can be monitored by electrochemical techniques including the generation of catalytically active molecular water oxidation catalyst intermediates and RuO2. In addition, catalytically inactive species such as [RuII(bpc-κ-N2OP)2] have also been detected
    corecore