3 research outputs found

    Matriptase-dependent epidermal pre-neoplasm in zebrafish embryos caused by a combination of hypotonic stress and epithelial polarity defects.

    No full text
    Aberrantly up-regulated activity of the type II transmembrane protease Matriptase-1 has been associated with the development and progression of a range of epithelial-derived carcinomas, and a variety of signaling pathways can mediate Matriptase-dependent tumorigenic events. During mammalian carcinogenesis, gain of Matriptase activity often results from imbalanced ratios between Matriptase and its cognate transmembrane inhibitor Hai1. Similarly, in zebrafish, unrestrained Matriptase activity due to loss of hai1a results in epidermal pre-neoplasms already during embryogenesis. Here, based on our former findings of a similar tumor-suppressive role for the Na+/K+-pump beta subunit ATP1b1a, we identify epithelial polarity defects and systemic hypotonic stress as another mode of aberrant Matriptase activation in the embryonic zebrafish epidermis in vivo. In this case, however, a different oncogenic pathway is activated which contains PI3K, AKT and NFkB, rather than EGFR and PLD (as in hai1a mutants). Strikingly, epidermal pre-neoplasm is only induced when epithelial polarity defects in keratinocytes (leading to disturbed Matriptase subcellular localization) occur in combination with systemic hypotonic stress (leading to increased proteolytic activity of Matriptase). A similar combinatorial effect of hypotonicity and loss of epithelial polarity was also obtained for the activity levels of Matriptase-1 in human MCF-10A epithelial breast cells. Together, this is in line with the multi-factor concept of carcinogenesis, with the notion that such factors can even branch off from one and the same initiator (here ATP1a1b) and can converge again at the level of one and the same mediator (here Matriptase). In sum, our data point to tonicity and epithelial cell polarity as evolutionarily conserved regulators of Matriptase activity that upon de-regulation can constitute an alternative mode of Matriptase-dependent carcinogenesis in vivo

    The 5-lipoxygenase inhibitor RF-22c potently suppresses leukotriene biosynthesis in cellulo and blocks bronchoconstriction and inflammation in vivo

    No full text
    5-Lipoxygenase (5-LO) catalyzes the first two steps in leukotriene (LT) biosynthesis. Because LTs play pivotal roles in allergy and inflammation, 5-LO represents a valuable target for anti-inflammatory drugs. Here, we investigated the molecular mechanism, the pharmacological profile, and the in vivo effectiveness of the novel 1,2-benzoquinone-featured 5-LO inhibitor RF-22c. Compound RF-22c potently inhibited 5-LO product synthesis in neutrophils and monocytes (IC50â©ľ22nM) and in cell-free assays (IC50â©ľ140nM) without affecting 12/15-LOs, cyclooxygenase (COX)-1/2, or arachidonic acid release, in a specific and reversible manner, supported by molecular docking data. Antioxidant or iron-chelating properties were not evident for RF-22c and 5-LO-regulatory cofactors like Ca(2+) mobilization, ERK-1/2 activation, and 5-LO nuclear membrane translocation and interaction with 5-LO-activating protein (FLAP) were unaffected. RF-22c (0.1mg/kg; i.p.) impaired (I) bronchoconstriction in ovalbumin-sensitized mice challenged with acetylcholine, (II) exudate formation in carrageenan-induced paw edema, and (III) zymosan-induced leukocyte infiltration in air pouches. Taken together, RF-22c is a highly selective and potent 5-LO inhibitor in intact human leukocytes with pronounced effectiveness in different models of inflammation that warrants further preclinical analysis of this agent as anti-inflammatory drug

    Lipo-chitooligosaccharides as regulatory signals of fungal growth and development

    No full text
    International audienceLipo-chitooligosaccharides (LCOs) are signaling molecules produced by rhizobial bacteria that trigger the nodulation process in legumes, and by some fungi that also establish symbiotic relationships with plants, notably the arbuscular and ecto mycorrhizal fungi. Here, we show that many other fungi also produce LCOs. We tested 59 species representing most fungal phyla, and found that 53 species produce LCOs that can be detected by functional assays and/or by mass spectroscopy. LCO treatment affects spore germination, branching of hyphae, pseudohyphal growth, and transcription in non-symbiotic fungi from the Ascomycete and Basidiomycete phyla. Our findings suggest that LCO production is common among fungi, and LCOs may function as signals regulating fungal growth and development
    corecore