90 research outputs found

    Increased recruitment of domain general neural networks in language processing following Intensive Language-Action Therapy – fMRI evidence from people with chronic aphasia.

    Get PDF
    Purpose: The present study aimed to provide novel insights into the neural correlates of language improvement following Intensive Language Action Therapy (ILAT; also known as Constraint Induced Aphasia Therapy, CIAT). Method: Sixteen people with chronic aphasia underwent clinical aphasia assessment (Aachen Aphasia Test, AAT), as well as functional magnetic resonance imaging (fMRI), both administered before (T1) and after ILAT (T2). The fMRI task included passive reading of single written words, with hashmark strings as visual baseline. Results: Behavioral results indicated significant improvements of AAT scores across therapy and fMRI results showed T2−T1 blood oxygenation level dependent (BOLD) signal change in the left precuneus to be modulated by the degree of AAT score increase. Subsequent region-of-interest (ROI) analysis of this precuneus cluster confirmed a positive correlation of T2−T1 BOLD signal change and improvement on the clinical aphasia test. Similarly, the entire default mode network (DMN) revealed a positive correlation between T2−T1 BOLD signal change and clinical language improvement. Conclusion: These results are consistent with a more efficient recruitment of domain general neural networks in language processing, including those involved in attentional control, following aphasia therapy with ILAT.This work was supported by the Deutsche Forschungsgemeinschaft (pu 97/15-1 and 97/15-2 awarded to F. P.), the Deutsche Akademische Austauschdienst (fellowship to G. L.), and the Einstein Center for Neuroscience Berlin (fellowship awarded to L. D.

    Pharmacokinetics and biodistribution of Erufosine in nude mice - implications for combination with radiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alkylphosphocholines represent promising antineoplastic drugs that induce cell death in tumor cells by primary interaction with the cell membrane. Recently we could show that a combination of radiotherapy with Erufosine, a paradigmatic intravenously applicable alkylphosphocholine, <it>in vitro </it>leads to a clear increase of irradiation-induced cell death. In view of a possible combination of Erufosine and radiotherapy <it>in vivo </it>we determined the pharmacokinetics and bioavailability as well as the tolerability of Erufosine in nude mice.</p> <p>Methods</p> <p>NMRI (nu/nu) nude mice were treated by intraperitoneal or subcutaneous injections of 5 to 40 mg/kg body weight Erufosine every 48 h for one to three weeks. Erufosine-concentrations were measured in brain, lungs, liver, small intestine, colon, spleen, kidney, stomach, adipoid tissue, and muscle by tandem-mass spectroscopy. Weight course, blood cell count and clinical chemistry were analyzed to evaluate general toxicity.</p> <p>Results</p> <p>Intraperitoneal injections were generally well tolerated in all dose groups but led to a transient loss of the bodyweight (<10%) in a dose dependent manner. Subcutaneous injections of high-dose Erufosine caused local reactions at the injection site. Therefore, this regimen at 40 mg/kg body weight Erufosine was stopped after 14 days. No gross changes were observed in organ weight, clinical chemistry and white blood cell count in treated compared to untreated controls except for a moderate increase in lactate dehydrogenase and aspartate-aminotransferase after intensive treatment. Repeated Erufosine injections resulted in drug-accumulation in different organs with maximum concentrations of about 1000 nmol/g in spleen, kidney and lungs.</p> <p>Conclusion</p> <p>Erufosine was well tolerated and organ-concentrations surpassed the cytotoxic drug concentrations <it>in vitro</it>. Our investigations establish the basis for a future efficacy testing of Erufosine in xenograft tumor models in nude mice alone and in combination with chemo- or radiotherapy.</p

    MALDI mass spectrometry imaging - Diagnostic pathways and metabolites for renal tumor entities

    Full text link
    BACKGROUND Correct tumor subtyping of primary renal tumors is essential for treatment decision in daily routine. Most of the tumors can be classified on morphology alone. Nevertheless, some diagnoses are difficult and further investigations are needed for correct tumor subtyping. Beside histochemical investigations high mass resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can detect new diagnostic biomarkers and hence improve the diagnostic. PATIENTS AND METHODS Formalin-fixed paraffin embedded (FFPE) tissue specimens from clear cell renal cell carcinoma (ccRCC, n=552), papillary RCC (pRCC, n=122), chromophobe RCC (chRCC, n=108) and renal Oncocytoma (rO, n=71) were analyzed by high mass resolution matrix-assisted laser desorption/ionization (MALDI) fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging (MSI). SPACiAL pipeline was executed for automated co-registration of histological and molecular features. Pathway enrichment and pathway topology analysis were performed to determine significant differences between RCC subtypes. RESULTS We discriminated the four histological subtypes (ccRCC, pRCC, chRCC and rO) and established the subtype specific pathways and metabolic profiles. RO showed an enrichment of pentose phosphate, taurine and hypotaurine, glycerophospholipid, amino sugar and nucleotide sugar, fructose and mannose, glycine, serine and threonine pathways. ChRCC is defined by enriched pathways including the amino sugar and nucleotide sugar, fructose and mannose, glycerophospholipid, taurine and hypotaurine, glycine, serine and threonine pathways. Pyrimidine, amino sugar and nucleotide sugar, glycerophospholipid and glutathione pathways are enriched in ccRCC. Furthermore, we detected enriched phosphatidylinositol and glycerophospholipid pathways in pRCC. CONCLUSION In summary, we performed a classification system with a mean accuracy in tumor discrimination of 85,13%. Furthermore, we detected tumor specific biomarkers for the four most common primary renal tumors by MALDI-MSI. This method is a useful tool in differential diagnosis and in biomarker detection

    Expression of GP88 (Progranulin) Protein Is an Independent Prognostic Factor in Prostate Cancer Patients

    Get PDF
    Prostate cancer, the second most common cancer, is still a major cause of morbidity and mortality among men worldwide. The expression of the survival and proliferation factor progranulin (GP88) has not yet been comprehensively studied in PCa tumors. The aim of this study was to characterize GP88 protein expression in PCa by immunohistochemistry and to correlate the findings to the clinico-pathological data and prognosis. Immunohistochemical staining for GP88 was performed by TMA with samples from 442 PCa patients using an immunoreactive score (IRS). Altogether, 233 cases (52.7%) with negative GP88 staining (IRS < 2) and 209 cases (47.3%) with positive GP88 staining (IRS ≥ 2) were analyzed. A significant positive correlation was found for the GP88 IRS with the PSA value at prostatectomy and the cytoplasmic cytokeratin 20 IRS, whereas it was negatively associated with follow-up times. The association of GP88 staining with prognosis was further studied by survival analyses (Kaplan–Meier, univariate and multivariate Cox’s regression analysis). Increased GP88 protein expression appeared as an independent prognostic factor for overall, disease-specific and relapse-free survival in all PCa patients. Interestingly, in the subgroup of younger PCa patients (≤65 years), GP88 positivity was associated with a 3.8-fold (p = 0.004), a 6.0-fold (p = 0.008) and a 3.7-fold (p = 0.003) increased risk for death, disease-specific death and occurrence of a relapse, respectively. In the PCa subgroup with negative CK20 staining, GP88 positivity was associated with a 1.8-fold (p = 0.018) and a 2.8-fold increased risk for death and disease-specific death (p = 0.028). Altogether, GP88 protein positivity appears to be an independent prognostic factor for PCa patients

    CCL2 Expression in Tumor Cells and Tumor-Infiltrating Immune Cells Shows Divergent Prognostic Potential for Bladder Cancer Patients Depending on Lymph Node Stage

    Get PDF
    Bladder cancer (BCa) is the ninth most commonly diagnosed cancer worldwide. Although there are several well-established molecular and immunological classifications, markers for tumor cells and immune cells that are associated with prognosis are still needed. The chemokine CC motif ligand 2 (CCL2) could be such a marker. We analyzed the expression of CCL2 by immunohistochemistry (IHC) in 168 muscle invasive BCa samples using a tissue microarray. Application of a single cut-off for the staining status of tumor cells (TCs; positive vs. negative) and immune cells (ICs; ≤6% of ICs vs. >6% of ICs) revealed 57 cases (33.9%) and 70 cases (41.7%) with CCL2-positive TCs or ICs, respectively. IHC results were correlated with clinicopathological and survival data. Positive CCL2 staining in TCs was associated with shorter overall survival (OS), disease-specific survival (DSS), and relapse-free survival (RFS) (p = 0.004, p = 0.036, and p = 0.047; log rank test) and appeared to be an independent prognostic factor for OS (RR = 1.70; p = 0.007; multivariate Cox’s regression analysis). In contrast, positive CCL2 staining in the ICs was associated with longer OS, DSS, and RFS (p = 0.032, p = 0.001, and p = 0.001; log rank test) and appeared to be an independent prognostic factor for DSS (RR = 1.77; p = 0.031; multivariate Cox’s regression analysis). Most interestingly, after separating the patients according to their lymph node status (N0 vs. N1+2), CCL2 staining in the ICs was differentially associated with prognosis. In the N0 group, CCL2 positivity in the ICs was a positive independent prognostic factor for OS (RR = 1.99; p = 0.014), DSS (RR = 3.17; p = 0.002), and RFS (RR = 3.10; p = 0.002), whereas in the N1+2 group, CCL2 positivity was a negative independent factor for OS (RR = 3.44; p = 0.019)) and RFS (RR = 4.47; p = 0.010; all multivariate Cox’s regression analyses). In summary, CCL2 positivity in TCs is a negative prognostic factor for OS, and CCL2 can mark ICs that are differentially associated with prognosis depending on the nodal stage of BCa patients. Therefore, CCL2 staining of TCs and ICs is suggested as a prognostic biomarker for BCa patients

    Fragile X mental retardation protein protects against tumour necrosis factor-mediated cell death and liver injury.

    Get PDF
    peer reviewed[en] OBJECTIVE: The Fragile X mental retardation (FMR) syndrome is a frequently inherited intellectual disability caused by decreased or absent expression of the FMR protein (FMRP). Lack of FMRP is associated with neuronal degradation and cognitive dysfunction but its role outside the central nervous system is insufficiently studied. Here, we identify a role of FMRP in liver disease. DESIGN: Mice lacking Fmr1 gene expression were used to study the role of FMRP during tumour necrosis factor (TNF)-induced liver damage in disease model systems. Liver damage and mechanistic studies were performed using real-time PCR, Western Blot, staining of tissue sections and clinical chemistry. RESULTS: Fmr1null mice exhibited increased liver damage during virus-mediated hepatitis following infection with the lymphocytic choriomeningitis virus. Exposure to TNF resulted in severe liver damage due to increased hepatocyte cell death. Consistently, we found increased caspase-8 and caspase-3 activation following TNF stimulation. Furthermore, we demonstrate FMRP to be critically important for regulating key molecules in TNF receptor 1 (TNFR1)-dependent apoptosis and necroptosis including CYLD, c-FLIPS and JNK, which contribute to prolonged RIPK1 expression. Accordingly, the RIPK1 inhibitor Necrostatin-1s could reduce liver cell death and alleviate liver damage in Fmr1null mice following TNF exposure. Consistently, FMRP-deficient mice developed increased pathology during acute cholestasis following bile duct ligation, which coincided with increased hepatic expression of RIPK1, RIPK3 and phosphorylation of MLKL. CONCLUSIONS: We show that FMRP plays a central role in the inhibition of TNF-mediated cell death during infection and liver disease

    Mild-to-Moderate Kidney Dysfunction and Cardiovascular Disease: Observational and Mendelian Randomization Analyses

    Get PDF
    BACKGROUND: End-stage renal disease is associated with a high risk of cardiovascular events. It is unknown, however, whether mild-to-moderate kidney dysfunction is causally related to coronary heart disease (CHD) and stroke. METHODS: Observational analyses were conducted using individual-level data from 4 population data sources (Emerging Risk Factors Collaboration, EPIC-CVD [European Prospective Investigation into Cancer and Nutrition-Cardiovascular Disease Study], Million Veteran Program, and UK Biobank), comprising 648 135 participants with no history of cardiovascular disease or diabetes at baseline, yielding 42 858 and 15 693 incident CHD and stroke events, respectively, during 6.8 million person-years of follow-up. Using a genetic risk score of 218 variants for estimated glomerular filtration rate (eGFR), we conducted Mendelian randomization analyses involving 413 718 participants (25 917 CHD and 8622 strokes) in EPIC-CVD, Million Veteran Program, and UK Biobank. RESULTS: There were U-shaped observational associations of creatinine-based eGFR with CHD and stroke, with higher risk in participants with eGFR values 105 mL·min-1·1.73 m-2, compared with those with eGFR between 60 and 105 mL·min-1·1.73 m-2. Mendelian randomization analyses for CHD showed an association among participants with eGFR 105 mL·min-1·1.73 m-2. Results were not materially different after adjustment for factors associated with the eGFR genetic risk score, such as lipoprotein(a), triglycerides, hemoglobin A1c, and blood pressure. Mendelian randomization results for stroke were nonsignificant but broadly similar to those for CHD. CONCLUSIONS: In people without manifest cardiovascular disease or diabetes, mild-to-moderate kidney dysfunction is causally related to risk of CHD, highlighting the potential value of preventive approaches that preserve and modulate kidney function

    Mild-to-Moderate Kidney Dysfunction and Cardiovascular Disease: Observational and Mendelian Randomization Analyses

    Full text link
    BACKGROUND: End-stage renal disease is associated with a high risk of cardiovascular events. It is unknown, however, whether mild-to-moderate kidney dysfunction is causally related to coronary heart disease (CHD) and stroke. METHODS: Observational analyses were conducted using individual-level data from 4 population data sources (Emerging Risk Factors Collaboration, EPIC-CVD [European Prospective Investigation into Cancer and Nutrition-Cardiovascular Disease Study], Million Veteran Program, and UK Biobank), comprising 648 135 participants with no history of cardiovascular disease or diabetes at baseline, yielding 42 858 and 15 693 incident CHD and stroke events, respectively, during 6.8 million personyears of follow-up. Using a genetic risk score of 218 variants for estimated glomerular filtration rate (eGFR), we conducted Mendelian randomization analyses involving 413 718 participants (25917 CHD and 8622 strokes) in EPIC-CVD, Million Veteran Program, and UK Biobank. RESULTS: There were U-shaped observational associations of creatinine-based eGFR with CHD and stroke, with higher risk in participants with eG FR values 105 mL.min(-1).1.73 m(-2), compared with those with eG FR between 60 and 105 mL.min(-1).1.73 m(-2). Mendelian randomization analyses for CHD showed an association among participants with eGFR 105 mL.min(-1).1.73 m(-2). Results were not materially different after adjustment for factors associated with the eGFR genetic risk score, such as lipoprotein(a), triglycerides, hemoglobin Alc, and blood pressure. Mendelian randomization results for stroke were nonsignificant but broadly similar to those for CHD. CONCLUSIONS: In people without manifest cardiovascular disease or diabetes, mild-to-moderate kidney dysfunction is causally related to risk of CHD, highlighting the potential value of preventive approaches that preserve and modulate kidney function
    • …
    corecore