88 research outputs found

    Paediatric cardiac CT examinations: impact of the iterative reconstruction method ASIR on image quality - preliminary findings

    Get PDF
    Background: Radiation dose exposure is of particular concern in children due to the possible harmful effects of ionizing radiation. The adaptive statistical iterative reconstruction (ASIR) method is a promising new technique that reduces image noise and produces better overall image quality compared with routine-dose contrast-enhanced methods. Objective: To assess the benefits of ASIR on the diagnostic image quality in paediatric cardiac CT examinations. Materials and methods: Four paediatric radiologists based at two major hospitals evaluated ten low-dose paediatric cardiac examinations (80 kVp, CTDIvol 4.8-7.9mGy, DLP 37.1-178.9mGy·cm). The average age of the cohort studied was 2.6years (range 1day to 7years). Acquisitions were performed on a 64-MDCT scanner. All images were reconstructed at various ASIR percentages (0-100%). For each examination, radiologists scored 19 anatomical structures using the relative visual grading analysis method. To estimate the potential for dose reduction, acquisitions were also performed on a Catphan phantom and a paediatric phantom. Results: The best image quality for all clinical images was obtained with 20% and 40% ASIR (p < 0.001) whereas with ASIR above 50%, image quality significantly decreased (p < 0.001). With 100% ASIR, a strong noise-free appearance of the structures reduced image conspicuity. A potential for dose reduction of about 36% is predicted for a 2- to 3-year-old child when using 40% ASIR rather than the standard filtered back-projection method. Conclusion: Reconstruction including 20% to 40% ASIR slightly improved the conspicuity of various paediatric cardiac structures in newborns and children with respect to conventional reconstruction (filtered back-projection) alon

    Objective assessment of image quality in conventional and digital mammography taking into account dynamic range

    Get PDF
    The goal of this work is to develop a method to objectively compare the performance of a digital and a screen-film mammography system in terms of image quality. The method takes into account the dynamic range of the image detector, the detection of high and low contrast structures, the visualisation of the images and the observer response. A test object, designed to represent a compressed breast, was constructed from various tissue equivalent materials ranging from purely adipose to purely glandular composition. Different areas within the test object permitted the evaluation of low and high contrast detection, spatial resolution and image noise. All the images (digital and conventional) were captured using a CCD camera to include the visualisation process in the image quality assessment. A mathematical model observer (non-prewhitening matched filter), that calculates the detectability of high and low contrast structures using spatial resolution, noise and contrast, was used to compare the two technologies. Our results show that for a given patient dose, the detection of high and low contrast structures is significantly better for the digital system than for the conventional screen-film system studied. The method of using a test object with a large tissue composition range combined with a camera to compare conventional and digital imaging modalities can be applied to other radiological imaging techniques. In particular it could be used to optimise the process of radiographic reading of soft copy image

    Medical physicists' implication in radiological diagnostic procedures: results after 1 y of experience

    Get PDF
    Since January 2008—de facto 2012—medical physics experts (MPEs) are, by law, to be involved in the optimisation process of radiological diagnostic procedures in Switzerland. Computed tomography, fluoroscopy and nuclear medicine imaging units have been assessed for patient exposure and image quality. Large spreads in clinical practice have been observed. For example, the number of scans per abdominal CT examination went from 1 to 9. Fluoroscopy units showed, for the same device settings, dose rate variations up to a factor of 3 to 7. Quantitative image quality for positron emission tomography (PET)/CT examinations varied significantly depending on the local image reconstruction algorithms. Future work will be focused on promoting team cooperation between MPEs, radiologists and radiographers and on implementing task-oriented objective image quality indicator

    Model-based iterative reconstruction in pediatric chest CT: assessment of image quality in a prospective study of children with cystic fibrosis

    Get PDF
    Background: The potential effects of ionizing radiation are of particular concern in children. The model-based iterative reconstruction VEOTM is a technique commercialized to improve image quality and reduce noise compared with the filtered back-projection (FBP) method. Objective: To evaluate the potential of VEOTM on diagnostic image quality and dose reduction in pediatric chest CT examinations. Materials and methods: Twenty children (mean 11.4years) with cystic fibrosis underwent either a standard CT or a moderately reduced-dose CT plus a minimum-dose CT performed at 100kVp. Reduced-dose CT examinations consisted of two consecutive acquisitions: one moderately reduced-dose CT with increased noise index (NI = 70) and one minimum-dose CT at CTDIvol 0.14mGy. Standard CTs were reconstructed using the FBP method while low-dose CTs were reconstructed using FBP and VEO. Two senior radiologists evaluated diagnostic image quality independently by scoring anatomical structures using a four-point scale (1=excellent, 2=clear, 3=diminished, 4=non-diagnostic). Standard deviation (SD) and signal-to-noise ratio (SNR) were also computed. Results: At moderately reduced doses, VEO images had significantly lower SD (P < 0.001) and higher SNR (P < 0.05) in comparison to filtered back-projection images. Further improvements were obtained at minimum-dose CT. The best diagnostic image quality was obtained with VEO at minimum-dose CT for the small structures (subpleural vessels and lung fissures) (P < 0.001). The potential for dose reduction was dependent on the diagnostic task because of the modification of the image texture produced by this reconstruction. Conclusions: At minimum-dose CT, VEO enables important dose reduction depending on the clinical indication and makes visible certain small structures that were not perceptible with filtered back-projectio

    Diagnostic and interventional radiology: a strategy to introduce reference dose level taking into account the national practice

    Get PDF
    The purpose of this study is to present a strategy to define the reference dose levels for fluoroscopic, dose-intensive examinations. This work is a part of the project of the Federal Office of Public Health of Switzerland to translate the guidelines of the International Commission on Radiological Protection and the European Union into action. The study will also be used to set reference dose levels on the basis of a national survey. All the fluoroscopic units, involved in the survey, were equipped with a KAP (kerma-area product) meter. All KAP meters were first calibrated to ensure the comparability of the dose measurements. The doses and the dose rates together with subjective image quality measurements were acquired in all the centres. Eight types of examination were chosen by a panel of radiologists, and each of the five centres involved agreed to monitor 20 patients per examination type. A wide variation in the dose and the image quality in fixed geometry was observed. For example, the skin dose rate for abdominal examinations varied in the range of 12-42 mGy min−1 for comparable image quality. Average KAP values of 67, 178, 106, 102, 473, 205, 307 and 316 Gy cm2 were recorded for barium meal, abdominal angiography, cerebral angiography, barium enema, hepatic embolisation, biliary drainage, cerebral embolisation and femoral stenting, respectively. The values obtained in this limited study are generally higher than the ones available in the literature and strategies to optimise these studies have to be discussed. A strict control concerning the denomination of the examination type involved in such a study is mandatory to obtain reliable data. This can only be done through a close collaboration between physicians, radiographers and medical physicist

    Management of patient dose and image noise in routine pediatric CT abdominal examinations

    Get PDF
    The aim was to propose a strategy for finding reasonable compromises between image noise and dose as a function of patient weight. Weighted CT dose index (CTDIw) was measured on a multidetector-row CT unit using CTDI test objects of 16, 24 and 32cm in diameter at 80, 100, 120 and 140kV. These test objects were then scanned in helical mode using a wide range of tube currents and voltages with a reconstructed slice thickness of 5mm. For each set of acquisition parameter image noise was measured and the Rose model observer was used to test two strategies for proposing a reasonable compromise between dose and low-contrast detection performance: (1) the use of a unique noise level for all test object diameters, and (2) the use of a unique dose efficacy level defined as the noise reduction per unit dose. Published data were used to define four weight classes and an acquisition protocol was proposed for each class. The protocols have been applied in clinical routine for more than one year. CTDIvol values of 6.7, 9.4, 15.9 and 24.5mGy were proposed for the following weight classes: 2.5-5, 5-15, 15-30 and 30-50kg with image noise levels in the range of 10-15HU. The proposed method allows patient dose and image noise to be controlled in such a way that dose reduction does not impair the detection of low-contrast lesions. The proposed values correspond to high- quality images and can be reduced if only high-contrast organs are assesse

    Objective assessment of low contrast detectability in computed tomography with Channelized Hotelling Observer

    Get PDF
    AbstractPurposeIterative algorithms introduce new challenges in the field of image quality assessment. The purpose of this study is to use a mathematical model to evaluate objectively the low contrast detectability in CT.Materials and methodsA QRM 401 phantom containing 5 and 8 mm diameter spheres with a contrast level of 10 and 20 HU was used. The images were acquired at 120 kV with CTDIvol equal to 5, 10, 15, 20 mGy and reconstructed using the filtered back-projection (FBP), adaptive statistical iterative reconstruction 50% (ASIR 50%) and model-based iterative reconstruction (MBIR) algorithms. The model observer used is the Channelized Hotelling Observer (CHO). The channels are dense difference of Gaussian channels (D-DOG). The CHO performances were compared to the outcomes of six human observers having performed four alternative forced choice (4-AFC) tests.ResultsFor the same CTDIvol level and according to CHO model, the MBIR algorithm gives the higher detectability index. The outcomes of human observers and results of CHO are highly correlated whatever the dose levels, the signals considered and the algorithms used when some noise is added to the CHO model. The Pearson coefficient between the human observers and the CHO is 0.93 for FBP and 0.98 for MBIR.ConclusionThe human observers' performances can be predicted by the CHO model. This opens the way for proposing, in parallel to the standard dose report, the level of low contrast detectability expected. The introduction of iterative reconstruction requires such an approach to ensure that dose reduction does not impair diagnostics

    Evaluation of a low-dose CT protocol with oral contrast for assessment of acute appendicitis

    Get PDF
    The aim of this study was to evaluate a low-dose CT with oral contrast medium (LDCT) for the diagnosis of acute appendicitis and compare its performance with standard-dose i.v. contrast-enhanced CT (standard CT) according to patients' BMIs. Eighty-six consecutive patients admitted with suspicion of acute appendicitis underwent LDCT (30mAs), followed by standard CT (180mAs). Both examinations were reviewed by two experienced radiologists for direct and indirect signs of appendicitis. Clinical and surgical follow-up was considered as the reference standard. Appendicitis was confirmed by surgery in 37 (43%) of the 86 patients. Twenty-nine (34%) patients eventually had an alternative discharge diagnosis to explain their abdominal pain. Clinical and biological follow-up was uneventful in 20 (23%) patients. LDCT and standard CT had the same sensitivity (100%, 33/33) and specificity (98%, 45/46) to diagnose appendicitis in patients with a body mass index (BMI) ≥ 18.5. In slim patients (BMI < 18.5), sensitivity to diagnose appendicitis was 50% (2/4) for LDCT and 100% (4/4) for standard CT, while specificity was identical for both techniques (67%, 2/3). LDCT may play a role in the diagnostic workup of patients with a BMI ≥ 18.

    CT radiation dose in children: a survey to establish age-based diagnostic reference levels in Switzerland

    Get PDF
    This work aimed at assessing the doses delivered in Switzerland to paediatric patients during computed tomography (CT) examinations of the brain, chest and abdomen, and at establishing diagnostic reference levels (DRLs) for various age groups. Forms were sent to the ten centres performing CT on children, addressing the demographics, the indication and the scanning parameters: number of series, kilovoltage, tube current, rotation time, reconstruction slice thickness and pitch, volume CT dose index (CTDIvol) and dose length product (DLP). Per age group, the proposed DRLs for brain, chest and abdomen are, respectively, in terms of CTDIvol: 20, 30, 40, 60mGy; 5, 8, 10, 12mGy; 7, 9, 13, 16mGy; and in terms of DLP: 270, 420, 560, 1,000mGy cm; 110, 200, 220, 460mGy cm; 130, 300, 380, 500mGy cm. An optimisation process should be initiated to reduce the spread in dose recorded in this study. A major element of this process should be the use of DRL

    Computed tomography of the cervical spine: comparison of image quality between a standard-dose and a low-dose protocol using filtered back-projection and iterative reconstruction

    Get PDF
    Objective: To compare image quality of a standard-dose (SD) and a low-dose (LD) cervical spine CT protocol using filtered back-projection (FBP) and iterative reconstruction (IR). Materials and methods: Forty patients investigated by cervical spine CT were prospectively randomised into two groups: SD (120kVp, 275mAs) and LD (120kVp, 150mAs), both applying automatic tube current modulation. Data were reconstructed using both FBP and sinogram-affirmed IR. Image noise, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were measured. Two radiologists independently and blindly assessed the following anatomical structures at C3-C4 and C6-C7 levels, using a four-point scale: intervertebral disc, content of neural foramina and dural sac, ligaments, soft tissues and vertebrae. They subsequently rated overall image quality using a ten-point scale. Results: For both protocols and at each disc level, IR significantly decreased image noise and increased SNR and CNR, compared with FBP. SNR and CNR were statistically equivalent in LD-IR and SD-FBP protocols. Regardless of the dose and disc level, the qualitative scores with IR compared with FBP, and with LD-IR compared with SD-FBP, were significantly higher or not statistically different for intervertebral discs, neural foramina and ligaments, while significantly lower or not statistically different for soft tissues and vertebrae. The overall image quality scores were significantly higher with IR compared with FBP, and with LD-IR compared with SD-FBP. Conclusion: LD-IR cervical spine CT provides better image quality for intervertebral discs, neural foramina and ligaments, and worse image quality for soft tissues and vertebrae, compared with SD-FBP, while reducing radiation dose by approximately 40
    • …
    corecore