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A B S T R A C T

Purpose: Iterative algorithms introduce new challenges in the field of image quality assessment. The purpose
of this study is to use a mathematical model to evaluate objectively the low contrast detectability in CT.
Materials and methods: A QRM 401 phantom containing 5 and 8 mm diameter spheres with a contrast
level of 10 and 20 HU was used. The images were acquired at 120 kV with CTDIvol equal to 5, 10, 15, 20 mGy
and reconstructed using the filtered back-projection (FBP), adaptive statistical iterative reconstruction
50% (ASIR 50%) and model-based iterative reconstruction (MBIR) algorithms. The model observer used
is the Channelized Hotelling Observer (CHO). The channels are dense difference of Gaussian channels
(D-DOG). The CHO performances were compared to the outcomes of six human observers having per-
formed four alternative forced choice (4-AFC) tests.
Results: For the same CTDIvol level and according to CHO model, the MBIR algorithm gives the higher de-
tectability index. The outcomes of human observers and results of CHO are highly correlated whatever the
dose levels, the signals considered and the algorithms used when some noise is added to the CHO model.
The Pearson coefficient between the human observers and the CHO is 0.93 for FBP and 0.98 for MBIR.
Conclusion: The human observers’ performances can be predicted by the CHO model. This opens the way
for proposing, in parallel to the standard dose report, the level of low contrast detectability expected.
The introduction of iterative reconstruction requires such an approach to ensure that dose reduction does
not impair diagnostics.

© 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Computed Tomography (CT) represents about 10% of all radio-
logical examinations in Switzerland but about 70% of the collective
effective dose [1]. Since no dose limit is applicable for patients, a
first attempt to optimize patient exposure in radiology was the in-
troduction of diagnostic reference levels (DRL) [2]. This concept
makes it possible to identify situations in which dose level is beyond
the examinations’ common practices [3]. Despite this, a focus re-
stricted to dose alone is highly insufficient in a framework of
optimization between the radiological risk and image informa-
tion. A surrogate to assess image information is the measurement
of physical metrics such as image noise, spatial resolution, and
contrast-to-noise ratio. However, these concepts are only valid for

linear systems or algorithms. The introduction of iterative
reconstructions into CT introduces new challenges in the field of
image quality assessment since most of the standard metrics are
no longer applicable [4–6]. State-of-the art medical image quality
assessment takes another approach by defining image quality as how
well the desired information for a given task can be extracted from
an image [7]. Simple binary tasks, such as discrimination between
the presence and absence of pathology among a given population,
are usually characterized by the use of Receiver Operating Curve
(ROC) studies [8,9]. Unfortunately these studies are time-consuming
[10] and difficult to implement in practice. Therefore, it is neces-
sary to develop tools such as model observers [11,12] which make
it possible to quantify image quality using a similar paradigm but
in much simpler ways [13,14].

It has been shown that mathematical model observers, such as
the Non Pre-whitening model with Eye-filter (NPWE) or Channel-
ized Hotelling Observer (CHO) [15], can predict the capacity of
human vision to detect low contrast targets. The advantage of this
approach is that it enables testing the whole imaging chain [13] but
it requires a substantial amount of data to be statistically robust.
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The purpose of this work was to investigate if the approach of image
quality assessment by means of the CHO model observer could be
applicable in routine practice in order to facilitate a control of image
quality while reducing patient exposure. Thus, our work used a
limited number of acquisitions with a specifically designed phantom
that allowed the sampling of several realizations per slice. The use
of such a methodology could then produce an image quality indi-
cator that could be analyzed with the standard dose report. We also
compared the results of the CHO model used with the outcome of
human observers while varying several acquisition and image re-
construction parameters on an abdominal phantom.

Materials and methods

Data acquisitions

The QRM 401 phantom (Moehrendorf, Germany; see Fig. 1) was
imaged on a GE 750 HD scanner (GE Healthcare, USA). The phantom
is made of muscle, liver, spleen and bone (vertebrae) tissue equiva-
lents at 120 kV. Two dedicated moduli (moduli A and B) can be
inserted into the phantom shell. Modulus A includes spheres of
various diameters: 8, 6, 5, 4 and 3 mm; each size having a con-
trast of 10 and 20 HU relative to the background at 120 kV. This
phantom enables the assessment of in-plane and axial low-contrast
detectability. In this study we only considered the in plane low con-
trast detectability for two sphere diameters: 5 and 8 mm. The spheres
of each contrast level were positioned within the same slice posi-
tion. Modulus B is homogeneous and was used to produce images
free from low contrast target.

Acquisitions were performed at 120 kVp in helical mode (0.984 as
pitch factor). In order to get CTDIvol values of 5, 10, 15 and 20 mGy the
X-ray tube rotation time was kept constant (1 s) while varying the tube
current. Indicated CTDIvol values were verified as described in the IEC
60601-2-44. The X-ray beam collimation geometry was 64 × 0.625 mm
(leading to a total X-ray collimation at isocenter of 40 mm) and the re-
constructed scan FOV was 320 × 320 mm using a 512 × 512 matrix size.
Slices were reconstructed with a nominal thickness of 2.5 mm and a
slice interval of 2.5 mm. The reconstruction filter used was the stan-
dard “body” filter provided by the manufacturer.

Images were reconstructed in the axial plane with three algo-
rithms: filtered back-projection (FBP), and two iterative algorithms:
Adaptive Statistical Iterative Reconstruction 50% (ASIR 50%) and the
model-based iterative reconstruction (VEO 2.0) [16–20]. ASIR 50%
was chosen since it corresponds to the option that is used for stan-
dard abdominal acquisitions in our center.

We investigated 48 different categories (3 reconstruction algo-
rithms × 4 dose levels × 2 signal sizes × 2 contrast levels). The
phantom with modulus A was (see Fig. 1) positioned at the isocenter
of the CT unit and scanned ten times for each dose level, without
changing its position between acquisitions. The phantom with
modulus B was scanned only once for each dose level without chang-
ing its position between acquisitions.

Generating signal-absent and signal-present images

The program was implemented with the Python programming
language. The first step performed by the software was the auto-
matic production of ROIs. For that, the vertebra which represents
the reference point was searched in the central slice. Using the co-
ordinates of this reference point, a relative reference frame was
created in the image and the ROIs were created automatically based
on pre-established coordinates (derived from the technical plan of
the phantom). The vertebra was used as a reference because it
is the most contrasted material present in the phantom, ensuring
that the template matching method is robust enough even at low
dose levels. For each acquisition, 4 signal-centered ROIs per signal
size/contrast combination (22 × 22 pixels; pixel size of 0.625 mm)
were automatically extracted from the images. Signal-absent ROIs
were extracted on images of Modulus B using the same in-plane
(x,y) coordinates as the images obtained with Modulus A. However,
the signal-absent ROIs were extracted in successive slices whereas
the signal-present ROIs were extracted at a unique longitudinal po-
sition. In the following section ROIs will be called signal-present
images if the signal is present in the ROIs or signal-absent images
if the signal is absent. The sample consists of 40 signal-present cases
(see Fig. 2) and 520 signal-absent cases (see Fig. 3) for each cate-
gory. The same images were used for model and human observers.

Figure 1. QRM 401 phantom acquired with MBIR at 20 mGy.

Figure 2. Signal-present image (sphere of 8 mm/20 HU).

Figure 3. Signal-absent image.
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Human observer study

Six medical physicist students rated the images. These naive
human observers (non radiologist) conducted four alternative forced
choice (4-AFC) tests (see Fig. 4). The images were displayed on a
Siemens SMM 21200P screen in conformity with DICOM 3.14 and
AAPM TG18 standards [21]. The reading of images was performed
in a room with an ambient light level of about 10 lux. Observers
were at a distance of about 50 cm from the screen. No time limit
was imposed on the observer to make their decision. During a 4-AFC
study with 4 independent image combinations, three images with
signal-absent and one with signal-present images were displayed
and the observer was requested to identify which image con-
tained the signal. To avoid any bias, the signal is randomly assigned
to one of the 4 positions. The images were magnified to 128 × 128
pixels using a bilinear interpolation to appear at their actual size
on the screen. The display window level and window width were
adjusted to produce the best signal and then kept constant.

Each observer tested 30 images per category for a total of 1440
images. The test was divided into three sessions (480 trials per
session) in order to minimize the loss of concentration; each session
interval was at least 24 hours. The first session began with a train-
ing session with 52 images acquired at high doses (CTDIvol = 35 and
50 mGy). During this session the result of each trial, “correct” or “in-
correct”, was shown to the observers after they replied.

For each category, at the end of the test each observer ob-
tained a percentage of correct responses (PC). This metric represents

the probability of correctly identifying the image containing the
signal, and the higher the PC, the better the performance. PC was
then converted into detectability to enable comparison between the
performances of model observers with those of the human observ-
ers using Eq. (1) [15].

PC d d AFC= −( ) ( )∫ λ λ λϕ 4
3Φ (1)

where Φ is the cumulative Gaussian distribution function and d4AFC

represents the detectability obtained from a 4-AFC test performed
by the human observers. The value of d4AFC can be found using spe-
cific tabulated values [22–24].

Model observer: Channelized Hotelling Observer

Model observers are mathematical models based on the statis-
tical decision theory to estimate the detection performance of ideal
or human observers. In this study a linear anthropomorphic CHO
model observer was chosen. The decision variable which is the
outcome of the model is given by the dot product between the tem-
plate w and the reconstructed image gi (i = 0 or i = 1 respectively
represents signal-absent or signal-present hypothesis), expressed
as an N × 1 column vector (see Fig. 5) [7,13].

λi
T

i= ⋅w g (2)

The CHO model is a derivative of the Hotelling Observer (HO)
which is too computing expensive to be used in practice [9]. To
reduce the dimensionality of HO and take advantage of the spatial
selectivity behavior of the human visual system, the image is first
passed through J channels, where J is significantly lower than N [25].
The channel output, a scalar vi, is obtained by the dot product
between the channel uj and the image g.

v u gi j
T= ( ) (3)

Thus, U, the matrix representation of the channel filters, is an
N × J matrix where each column is one of channel uj [26].

Figure 4. Example of test 4 AFC. Figure 5. Image and template as column vectors.
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For the type of targets to be detected in this study the CHO model,
using the dense of difference of Gaussian (D-DOG) channels type,
is recognized as a good model of human vision, and this is even with
a limited number of 10 channels enabling a drastic reduction of the
images required to compute the model observer outcome [27,28].

In this model, the radial profile of each frequency is given by the
following formula:
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where ρ is the spatial frequency and σj is the standard deviation
of each channel. Each σj value is given by σj = σ0αj-1. Factor Q is the
bandwidth of the filter. Generally the parameters used are: σ0 = 0.005,
α = 1.4 and Q = 1.67 values from [27].

The template of the resulting covariance matrix was calculated
from all images containing no signal according to:

w K v vCHO v n s n= ( ) 〈 − 〉−1 (5)

where K Kv n
T

v n( ) = U U .
Kv/n represents the covariance matrix computed from channel-

ized images containing no signal. In Eq. (5) vs represents the vector
containing the data of the signal images as seen through the chan-
nels, and vn represents the vector containing the data of the signal-
absent as seen through the channels [15,28,29].

The decision variable of the CHO model is obtained by combin-
ing Eq. (5) and Eq. (2). However, with the CHO model the decision
variable is not computed with the images but with the channel-
ized images (vi):

λCHO
T

CHO i= w v (6)

Internal noise

Model observers like CHO with well suited channels are more
efficient than human observers for simple detection tasks such as
Signal Known Exactly/Background Known Exactly (SKE/BKE). To
adjust the detection outcomes of model observers to human ob-
servers it is necessary to add some internal noise, ε, to the model
observer formula as shown by Eq. (7) [30].

λ λ εnoisy = + (7)

Internal noise ε is added to the decision variable λ, with a prob-
ability proportional to the standard deviation of the distribution of
the decision variable from the signal absent images [30].

ε α σ ξ= × ×bg (8)

where α is the weighting factor and ξ is a random number gener-
ated between −1 and 1, σbg is the standard deviation of the
distribution of the decision variable of signal-absent.

In this study, the coefficient α was calibrated using images con-
taining the signal 8 mm/10 HU at 15 mGy reconstructed with FBP
and VEO. α was varied between 0 and 10 iteratively. The value that
minimized the difference between the model observers and the
human observer outcomes for each algorithm was then selected.

Assessment of the model outcomes

For each category, 560 decision variables were calculated (520
from signal-absent images and 40 from signal-present images). The
ROC curves were then generated from pairs of TPF and FPF and the

area under the curve was calculated by the trapezoidal method using
100 points.

Concerning the uncertainties of the results the average and stan-
dard deviation of the area under the curve (AUC) are obtained using
the bootstrap method [31]; in our study the error bars represent
plus or minus one standard deviation (68% for a Gaussian distri-
bution). In order to estimate the mean and the standard deviation,
the bootstrap was made using 1000 iterations for each category, and
for each iteration, 520 signal-absent images and 40 signal-present
images were randomly selected and replaced. Finally, to compare
the performance of the CHO and the human performance, the AUC
and its uncertainties were converted into detectability index (dA)
using Eq. (9) to be used as a figure of merit [15]. For our calcula-
tions, the maximum value was set to 6 whereas theoretically,
detectability varies between 0 and infinity. Obviously, the higher
is the index value, the better is the signal visibility.

d AUCA = −( )−2 2 11Φ (9)

where Φ is the normal cumulative distribution function.

Φ z e dyy
z

( ) = −( )∫
2 2

0π
(10)

Results

Comparison of FBP, ASIR 50% and MBIR

In this section, algorithms FBP, ASIR 50% and MBIR are com-
pared with the CHO model without internal noise implemented with
a D-DOG. Figure 6 shows the performance of the CHO model without
noise addition for the 3 algorithms. FBP is taken as the reference
algorithm. The detectability index, dA, varies from 0.67 to 6; i.e. it
varies from almost no detection to a perfect detection. The results
for ASIR 50% are comparable to the ones of FBP whatever the size
and contrast tested. ASIR 50% is however slightly better than FBP
when the dose reaches a certain level. For signals 5 mm/10 HU, the
performances between the algorithms are very similar. When the
signal is hardly detectable MBIR does not improve the perfor-
mance. Nevertheless, with 8 mm/10 HU or 8 mm/20 HU, MBIR
improves the detectability resulting in better outcomes whatever
the dose when compared to ASIR 50% and FBP. The detectability
index, dA, generally increases with dose reaching a plateau; this
plateau is reached faster with MBIR algorithm than with ASIR 50%
or FBP.

Internal noise calibration

Figure 7 shows the variation of dA as a function of α at a dose
level of 15 mGy for the sphere 8 mm/10 HU reconstructed with FBP.
As expected, the higher the α, the lower the dA. From these data it
appears that α set to 3.15 provided a good match between the CHO
and human observers for the image of this category. We decided
to take that value for the other categories. The calibration was also
performed with the algorithm VEO using the category 8 mm/10 HU
at 10 mGy (see Fig. 8). The resulting alpha coefficient is 3.6 which
is quite similar to the previous one but it enables a better comparison.

Correlation of performances between model observers and human
observers

All the detectability indexes obtained using the CHO model were
compared with the 4-AFC results for images reconstructed using the
algorithms MBIR and FBP, only since ASIR 50% led to comparable results
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than FBP. For each dose level, performances were strongly correlated
except for the 8 mm/20 HU at 5 mGy. The Pearson coefficient is 0.911
for the 5 mm sphere FBP-reconstructed, 0.948 for 8 mm sphere FBP-
reconstructed, 0.971 for the 5 mm sphere MBIR-reconstructed and 0.983
for 8 mm sphere MBIR-reconstructed. Error bars for the model observ-
er represent plus or minus one standard deviation uncertainty obtained

from 200 internal noise realizations. For human observers, uncertain-
ty is also plus or minus one standard deviation for responses recorded
during the 4-AFC experiments.

All human observer results show a dose dependent increase in
the detectability index. This is also the case when the size and con-
trast increase. For 8 mm/20 HU the increase in dose is not associated
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Figure 6. Comparison between FBP, ASIR 50% and MBIR algorithms.

Figure 7. Internal noise calibration for an 8 mm and 10 HU sphere reconstructed
with FBP algorithm.

Figure 8. Internal noise calibration for a 8 mm and 10 HU sphere reconstructed with
MBIR algorithm.

80 D. Racine et al./Physica Medica 32 (2016) 76–83



with a detectability index benefit since human observer out-
comes are already very good (see Fig. 9).

To compare the performances between CHO (internal noise added)
and humans, the Bland–Altman plot was used. Its ordinate is the dif-
ference between the values obtained by the two types of observers
and its abscissa is the average value of the detectability index ob-
tained by the two types of observers. Each point represents a class
and the dotted lines represent plus or minus two standard devia-
tions (95% for a Gaussian distribution). All the points are in the range
plus or minus two standard deviations (see Fig. 10). Internal noise
provides a good agreement between the responses of human ob-
servers and model observers. Also there is no relationship between
the deviations from the mean and increased detectability.

Discussion

Currently, patient radiation protection is a major issue and there
is a tendency to significantly reduce dose without paying much
attention on the potential loss of low contrast detectability. If this
parameter was controlled by CNR measurements in the past (using
FBP and keeping the same reconstruction kernel) the introduction

of iterative reconstruction algorithms does not allow such an ap-
proach anymore. One way to ensure the detection of a low contrasted
lesion is to try to mimic human detection with mathematical model
observers such as the CHO model used in this study. Our results show
that the trends of low contrast detection provided with the CHO
model used are compatible with human observers. However, without
the addition of internal noise the CHO model outperforms human
outcomes. It is therefore necessary to tune the internal noise of the
CHO model to obtain a good correlation between the responses. We
have shown that under our conditions a unique additional noise
setting gave satisfactory results whatever the sizes, contrasts and
dose involved. Thus, our method makes it possible to link a dose
level to low contrast detectability performances. This information
should improve the way optimization between image quality and
patient exposure is balanced.

According to manufacturers, iterative reconstructions enable a
drastic dose reduction without major loss of image quality. Our
results show that in terms of low contrast detectability caution must
be exercised in particular with the iterative reconstruction of the
first generation tested (ASIR 50%) in spite of having chosen a per-
centage recommended to get an image quality improvement without

Figure 9. Performance comparison between the CHO model and human observers.

81D. Racine et al./Physica Medica 32 (2016) 76–83



major image texture changes [32]. Concerning the model based it-
erative reconstruction (MBIR), in spite of being very computing
extensive, low contrast detectability cannot be recovered at a low
dose and for a very low contrast level. However, after a certain in-
crease in dose the use of MBIR leads to much better results in terms
of low contrast detectability than FBP or ASIR 50%. This kind of in-
formation is important when willing to lower patient exposure.

One limitation of our study when willing to calibrate the math-
ematical model observer with human results is the design of the
phantom. It enables getting four spheres of a given size and con-
trast level per acquisition which is an advantage, but these spheres
are very close to each other which require the use of a pixel inter-
polation to get a reasonable image size to be presented to the human
observer. For such calibration purposes one should avoid placing
several spheres within the same slice in order to generate large ROIs
compatible with the suggestions of Yu [29] who proposed an ROI
size of 4–5 times the size of the signal. Moreover the CT iterative
reconstruction is not shift invariant, so to have a maximum of spheres
in the minimum of space the phantom used in this project pro-
vides 4 spherical ROIs per acquisition. Unfortunately for this
compromise, which is nonetheless an advantage in terms of being
able to use this protocol to evaluate clinical protocols or CT units,
it was necessary to create the signals close to each other which might
also introduce some correlations from one signal affecting the values
of nearby signals.

Finally, our results apply in a simple situation in comparison to
the actual environment. The background images are homoge-
neous and the task is quite basic. However, we have been able to
demonstrate that dose reduction must be introduced while keeping
in mind that the detection of low contrast structures might be lost.

In such a situation some kind of information should be displayed
on the unit to inform the radiologists about the type of low con-
trast sphere they will not be able to detect.

Conclusion

CHO model coupled to D-DOG channels can be used to predict
human observer performance for a 4AFC even with a limited number
of acquisitions compatible with routine quality control measure-
ments in order to assess the low contrast detectability of the
acquisition for the FBP and iterative algorithms. From our results,
we can conclude that the model based iterative generation algo-
rithms (MBIR) offer superior image quality than FBP or ASIR 50%
at equivalent dose. Thus, MBIR certainly offers a potential for dose
reduction.

A CHO model, such as the one used in our study, could be used
in routine to qualify the image quality of any given acquisition pro-
tocol. The results provided are easy to present and can be well
understood by radiologists and radiographers. Finally, the use of such
model observers appears to be necessary to avoid dose reduction
that would significantly impair low contrast detectability.
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