685 research outputs found

    Improvement in hypercapnia does not predict survival in COPD patients on chronic noninvasive ventilation

    Get PDF
    Purpose: It has recently been shown that chronic noninvasive ventilation (NIV) improves a number of outcomes including survival, in patients with stable hypercapnic COPD. However, the mechanisms responsible for these improved outcomes are still unknown. The aim of the present study was to identify parameters associated with: 1) an improved arterial partial pressure of carbon dioxide (PaCO2) and 2) survival, in a cohort of hypercapnic COPD patients treated with chronic NIV. Patients and methods: Data from 240 COPD patients treated with chronic NIV were analyzed. Predictors for the change in PaCO2 and survival were investigated using multivariate linear and Cox regression models, respectively. Results: A higher level of bicarbonate before NIV initiation, the use of higher inspiratory ventilator pressures, the presence of anxiety symptoms, and NIV initiated following an exacerbation compared to NIV initiated in stable disease were associated with a larger reduction in PaCO2. A higher body mass index, a higher FEV1, a lower bicarbonate before NIV initiation, and younger age and NIV initiation in stable condition were independently associated with better survival. The change in PaCO2 was not associated with survival, neither in a subgroup of patients with a PaCO2 >7.0 kPa before the initiation of NIV. Conclusion: Patients with anxiety symptoms and a high bicarbonate level at NIV initiation are potentially good responders in terms of an improvement in hypercapnia. Also, higher inspiratory ventilator pressures are associated with a larger reduction in PaCO2. However, the improvement in hypercapnia does not seem to be associated with an improved survival and emphasizes the need to look beyond PaCO2 when considering NIV initiation

    Natural language processing for aviation safety: Extracting knowledge from publicly-available loss of separation reports

    Get PDF
    Background: The air traffic management (ATM) system has historically coped with a global increase in traffic demand ultimately leading to increased operational complexity. When dealing with the impact of this increasing complexity on system safety it is crucial to automatically analyse the losses of separation (LoSs) using tools able to extract meaningful and actionable information from safety reports. Current research in this field mainly exploits natural language processing (NLP) to categorise the reports,with the limitations that the considered categories need to be manually annotated by experts and that general taxonomies are seldom exploited. Methods: To address the current gaps,authors propose to perform exploratory data analysis on safety reports combining state-of-the-art techniques like topic modelling and clustering and then to develop an algorithm able to extract the Toolkit for ATM Occurrence Investigation (TOKAI) taxonomy factors from the free-text safety reports based on syntactic analysis. TOKAI is a tool for investigation developed by EUROCONTROL and its taxonomy is intended to become a standard and harmonised approach to future investigations. Results: Leveraging on the LoS events reported in the public databases of the Comisión de Estudio y Análisis de Notificaciones de Incidentes de Tránsito Aéreo and the United Kingdom Airprox Board,authors show how their proposal is able to automatically extract meaningful and actionable information from safety reports,other than to classify their content according to the TOKAI taxonomy. The quality of the approach is also indirectly validated by checking the connection between the identified factors and the main contributor of the incidents. Conclusions: Authors' results are a promising first step toward the full automation of a general analysis of LoS reports supported by results on real-world data coming from two different sources. In the future,authors' proposal could be extended to other taxonomies or tailored to identify factors to be included in the safety taxonomies

    Managing the complexity of doing it all : an exploratory study on students' experiences when trained stepwise in conducting consultations

    Get PDF
    Background: At most medical schools the components required to conduct a consultation, medical knowledge, communication, clinical reasoning and physical examination skills, are trained separately. Afterwards, all the knowledge and skills students acquired must be integrated into complete consultations, an art that lies at the heart of the medical profession. Inevitably, students experience conducting consultations as complex and challenging. Literature emphasizes the importance of three didactic course principles: moving from partial tasks to whole task learning, diminishing supervisors' support and gradually increasing students' responsibility. This study explores students' experiences of an integrated consultation course using these three didactic principles to support them in this difficult task. Methods: Six focus groups were conducted with 20 pre-clerkship and 19 clerkship students in total. Discussions were audiotaped, transcribed and analysed by Nvivo using the constant comparative strategy within a thematic analysis. Results: Conducting complete consultations motivated students in their learning process as future physician. Initially, students were very much focused on medical problem solving. Completing the whole task of a consultation obligated them to transfer their theoretical medical knowledge into applicable clinical knowledge on the spot. Furthermore, diminishing the support of a supervisor triggered students to reflect on their own actions but contrasted with their increased appreciation of critical feedback. Increasing students' responsibility stimulated their active learning but made some students feel overloaded. These students were anxious to miss patient information or not being able to take the right decisions or to answer patients' questions, which sometimes resulted in evasive coping techniques, such as talking faster to prevent the patient asking questions. Conclusion: The complex task of conducting complete consultations should be implemented early within medical curricula because students need time to organize their medical knowledge into applicable clinical knowledge. An integrated consultation course should comprise a step-by-step teaching strategy with a variety of supervisors' feedback modi, adapted to students' competence. Finally, students should be guided in formulating achievable standards to prevent them from feeling overloaded in practicing complete consultations with simulated or real patients

    SuperSweet—a resource on natural and artificial sweetening agents

    Get PDF
    A vast number of sweet tasting molecules are known, encompassing small compounds, carbohydrates, d-amino acids and large proteins. Carbohydrates play a particularly big role in human diet. The replacement of sugars in food with artificial sweeteners is common and is a general approach to prevent cavities, obesity and associated diseases such as diabetes and hyperlipidemia. Knowledge about the molecular basis of taste may reveal new strategies to overcome diet-induced diseases. In this context, the design of safe, low-calorie sweeteners is particularly important. Here, we provide a comprehensive collection of carbohydrates, artificial sweeteners and other sweet tasting agents like proteins and peptides. Additionally, structural information and properties such as number of calories, therapeutic annotations and a sweetness-index are stored in SuperSweet. Currently, the database consists of more than 8000 sweet molecules. Moreover, the database provides a modeled 3D structure of the sweet taste receptor and binding poses of the small sweet molecules. These binding poses provide hints for the design of new sweeteners. A user-friendly graphical interface allows similarity searching, visualization of docked sweeteners into the receptor etc. A sweetener classification tree and browsing features allow quick requests to be made to the database. The database is freely available at: http://bioinformatics.charite.de/sweet/

    Paternal mtDNA and Maleness Are Co-Inherited but Not Causally Linked in Mytilid Mussels

    Get PDF
    BACKGROUND: In marine mussels of the genus Mytilus there are two mitochondrial genomes. One is transmitted through the female parent, which is the normal transmission route in animals, and the other is transmitted through the male parent which is an unusual phenomenon. In males the germ cell line is dominated by the paternal mitochondrial genome and the somatic cell line by the maternal. Research to date has not allowed a clear answer to the question of whether inheritance of the paternal genome is causally related to maleness. METHODOLOGY/PRINCIPAL FINDINGS: Here we present results from hybrid crosses, from triploid mussels and from observations of sperm mitochondria in fertilized eggs which clearly show that maleness and presence of the paternal mitochondrial genome can be decoupled. These same results show that the female mussel has exclusive control of whether her progeny will inherit the mitochondrial genome of the male parent. CONCLUSIONS/SIGNIFICANCE: These findings are important in our efforts to understand the mechanistic basis of this unusual mode of mitochondrial DNA inheritance that is common among bivalves

    Design, Synthesis, and Structure−Activity Relationship Exploration of 1-Substituted 4-Aroyl-3-hydroxy-5-phenyl-1H-pyrrol-2(5H)-one Analogues as Inhibitors of the Annexin A2−S100A10 Protein Interaction

    Get PDF
    This research was supported by grants from Cancer Research UK. H.K.M. was funded by a Biotechnology and Biological Sciences Research Council studentship.S100 proteins are small adaptors that regulate the activity of partner proteins by virtue of direct protein interactions. Here, we describe the first small molecule blockers of the interaction between S100A10 and annexin A2. Molecular docking yielded candidate blockers that were screened for competition of the binding of an annexin A2 peptide to S100A10. Several inhibitory clusters were identified with some containing compounds with potency in the lower micromolar range. We chose 3-hydroxy-1-(2-hydroxypropyl)-5-(4-isopropylphenyl)-4-(4-methylbenzoyl)-1H-pyrrol-2(5H)-one (1a) as a starting point for structure-activity studies. These confirmed the hypothetical binding mode from the virtual screen for this series of molecules. Selected compounds disrupted the physiological complex of annexin A2 and S100A10, both in a broken cell preparation and inside MDA-MB-231 breast cancer cells. Thus, this class of compounds has promising properties as inhibitors of the interaction between annexin A2 and S100A10 and may help to elucidate the cellular function of this protein interaction.Peer reviewe

    One Scaffold, Three Binding Modes: Novel and Selective Pteridine Reductase 1 Inhibitors Derived from Fragment Hits Discovered by Virtual Screening†

    Get PDF
    The enzyme pteridine reductase 1 (PTR1) is a potential target for new compounds to treat human African trypanosomiasis. A virtual screening campaign for fragments inhibiting PTR1 was carried out. Two novel chemical series were identified containing aminobenzothiazole and aminobenzimidazole scaffolds, respectively. One of the hits (2-amino-6-chloro-benzimidazole) was subjected to crystal structure analysis and a high resolution crystal structure in complex with PTR1 was obtained, confirming the predicted binding mode. However, the crystal structures of two analogues (2-amino-benzimidazole and 1-(3,4-dichloro-benzyl)-2-amino-benzimidazole) in complex with PTR1 revealed two alternative binding modes. In these complexes, previously unobserved protein movements and water-mediated protein-ligand contacts occurred, which prohibited a correct prediction of the binding modes. On the basis of the alternative bindingmode of 1-(3,4-dichloro-benzyl)-2-amino-benzimidazole, derivatives were designed and selective PTR1 inhibitors with low nanomolar potency and favorable physicochemical properties were obtained
    corecore