5,758 research outputs found

    Collider Signature of T-quarks

    Full text link
    Little Higgs models with T Parity contain new vector-like fermions, the T-odd quarks or "T-quarks", which can be produced at hadron colliders with a QCD-strength cross section. Events with two acoplanar jets and large missing transverse energy provide a simple signature of T-quark production. We show that searches for this signature with the Tevatron Run II data can probe a significant part of the Little Higgs model parameter space not accessible to previous experiments, exploring T-quark masses up to about 400 GeV. This reach covers parts of the parameter space where the lightest T-odd particle can account for the observed dark matter relic abundance. We also comment on the prospects for this search at the Large Hadron Collider (LHC).Comment: 5 pages, 3 figure

    Symplectic integrators for index one constraints

    Full text link
    We show that symplectic Runge-Kutta methods provide effective symplectic integrators for Hamiltonian systems with index one constraints. These include the Hamiltonian description of variational problems subject to position and velocity constraints nondegenerate in the velocities, such as those arising in sub-Riemannian geometry and control theory.Comment: 13 pages, accepted in SIAM J Sci Compu

    Above and belowground community strategies respond to different global change drivers

    Get PDF
    Environmental changes alter the diversity and structure of communities. By shifting the range of species traits that will be successful under new conditions, environmental drivers can also dramatically impact ecosystem functioning and resilience. Above and belowground communities jointly regulate whole-ecosystem processes and responses to change, yet they are frequently studied separately. To determine whether these communities respond similarly to environmental changes, we measured taxonomic and trait-based responses of plant and soil microbial communities to four years of experimental warming and nitrogen deposition in a temperate grassland. Plant diversity responded strongly to N addition, whereas soil microbial communities responded primarily to warming, likely via an associated decrease in soil moisture. These above and belowground changes were associated with selection for more resource-conservative plant and microbe growth strategies, which reduced community functional diversity. Functional characteristics of plant and soil microbial communities were weakly correlated (P = 0.07) under control conditions, but not when above or belowground communities were altered by either global change driver. These results highlight the potential for global change drivers operating simultaneously to have asynchronous impacts on above and belowground components of ecosystems. Assessment of a single ecosystem component may therefore greatly underestimate the whole-system impact of global environmental changes

    Sound and light from fractures in scintillators

    Full text link
    Prompted by intriguing events observed in certain particle-physics searches for rare events, we study light and acoustic emission simultaneously in some inorganic scintillators subject to mechanical stress. We observe mechanoluminescence in Bi4Ge3O12{Bi}_4{Ge}_{3}{O}_{12}, CdWO4{CdWO}_{4} and ZnWO4{ZnWO}_{4}, in various mechanical configurations at room temperature and ambient pressure. We analyze how the light emission is correlated to acoustic emission during fracture. For Bi4Ge3O12{Bi}_4{Ge}_{3}{O}_{12}, we set a lower bound on the energy of the emitted light, and deduce that the fraction of elastic energy converted to light is at least 3×1053 \times 10^{-5}

    A Candidate Low Emittance Lattice for LEP at its Highest Energies

    Get PDF
    Several low emittance lattices have been proposed for LEP at its highest energies in order to reduce the horizontal beam size and bring the beam-beam limit within reach. However, optics with high phase advance per cell tend to have strong tune dependence on amplitude that can reduce the dynamic aperture and the beam lifetime, possibly limiting the maximum beam energy or creating operational difficulties. Recently an optics with a phase advance of 17p/30 in the horizontal and p/2 in the vertical plane was developed. This optics has a significantly smaller detuning with amplitude. The results of experiments on this optics are compared with expectations and some details of the first operational experience with this lattice are presented. The potential performance at maximum energy is discussed

    Experience with a Low Emittance Optics in LEP

    Get PDF
    Since start-up in 1998, LEP has operated with a low emittance lattice with a phase advance of 102 deg in the horizontal and 90 deg in the vertical planes. This optics provides a horizontal detuning with amplitude which is small enough to avoid a reduced dynamic aperture in the horizontal plane, a problem experienced in other low emittance lattices. The optics is designed to operate at the highest LEP energies up to and above 100 GeV, as well as at 45.6 GeV (still required to provide Z0s for the calibration of the experiments detectors). The experience gained with this low emittance lattice after one year of operation is presented and its future potential is discussed

    A conceptual map of invasion biology: Integrating hypotheses into a consensus network

    Get PDF
    Background and aims Since its emergence in the mid‐20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field’s current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses. Results The resulting network was analysed with a link‐clustering algorithm that revealed five concept clusters (resource availability, biotic interaction, propagule, trait and Darwin’s clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called connecting hypotheses, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections). Significance The network visually synthesizes how invasion biology’s predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure – a conceptual map – that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography

    Interface relaxation in electrophoretic deposition of polymer chains: Effects of segmental dynamics, molecular weight, and field

    Get PDF
    Using different segmental dynamics and relaxation, characteristics of the interface growth is examined in an electrophoretic deposition of polymer chains on a three (2+1) dimensional discrete lattice with a Monte Carlo simulation. Incorporation of faster modes such as crankshaft and reptation movements along with the relatively slow kink-jump dynamics seems crucial in relaxing the interface width. As the continuously released polymer chains are driven (via segmental movements) and deposited, the interface width WW grows with the number of time steps tt, Wtβ,W \propto t^{\beta}, (β0.4\beta \sim 0.4--0.8)0.8), which is followed by its saturation to a steady-state value WsW_s. Stopping the release of additional chains after saturation while continuing the segmental movements relaxes the saturated width to an equilibrium value (WsWrW_s \to W_r). Scaling of the relaxed interface width WrW_r with the driving field EE, WrE1/2W_r \propto E^{-1/2} remains similar to that of the steady-state WsW_s width. In contrast to monotonic increase of the steady-state width WsW_s, the relaxed interface width WrW_r is found to decay (possibly as a stretched exponential) with the molecular weight.Comment: 5 pages, 7 figure
    corecore