7 research outputs found

    Prostate contours delineation using interactive directional active contours model and parametric shape prior model

    No full text
    IF=2.052International audienceProstate contours delineation on Magnetic Resonance (MR) images is a challenging and important task in medical imaging with applications of guiding biopsy, surgery and therapy. While a fully automated method is highly desired for this application, it can be a very difficult task due to the structure and surrounding tissues of the prostate gland. Traditional active contours-based delineation algorithms are typically quite successful for piecewise constant images. Nevertheless, when MR images have diffuse edges or multiple similar objects (e.g. bladder close to prostate) within close proximity, such approaches have proven to be unsuccessful. In order to mitigate these problems, we proposed a new framework for bi-stage contours delineation algorithm based on directional active contours (DAC) incorporating prior knowledge of the prostate shape. We first explicitly addressed the prostate contour delineation problem based on fast globally DAC that incorporates both statistical and parametric shape prior model. In doing so, we were able to exploit the global aspects of contour delineation problem by incorporating a user feedback in contours delineation process where it is shown that only a small amount of user input can sometimes resolve ambiguous scenarios raised by DAC. In addition, once the prostate contours have been delineated, a cost functional is designed to incorporate both user feedback interaction and the parametric shape prior model. Using data from publicly available prostate MR datasets, which includes several challenging clinical datasets, we highlighted the effectiveness and the capability of the proposed algorithm. Besides, the algorithm has been compared with several state-of-the-art methods. Copyright © 2015 John Wiley & Sons, Ltd

    Breaking the clinico-radiological paradox in multiple sclerosis using machine learning

    No full text
    International audienceMRI is central to the study of white matter lesions in multiple sclerosis (MS). To date, the distribution of MS lesions, as evaluated on FLAIR imaging, has not been linked to patients’ disability prediction. Based on an international data challenge with 1500 MS patients and ground truth 2-year Expanded Disability Status Scale (EDSS), we have proposed an adaptive machine learning framework to predict the clinical disability. Here, we report the encouraging finding that our algorithm predicts the 2-year EDSS score with an accuracy estimated to 81%, only based on a single initial FLAIR sequence, added to sex and gender information

    Breaking the clinico-radiological paradox in multiple sclerosis using machine learning

    No full text
    International audienceMRI is central to the study of white matter lesions in multiple sclerosis (MS). To date, the distribution of MS lesions, as evaluated on FLAIR imaging, has not been linked to patients’ disability prediction. Based on an international data challenge with 1500 MS patients and ground truth 2-year Expanded Disability Status Scale (EDSS), we have proposed an adaptive machine learning framework to predict the clinical disability. Here, we report the encouraging finding that our algorithm predicts the 2-year EDSS score with an accuracy estimated to 81%, only based on a single initial FLAIR sequence, added to sex and gender information

    Eur Radiol.

    No full text
    Objectives: We aimed to define brain iron distribution patterns in subtypes of early-onset Alzheimer’s disease (EOAD) by the use of quantitative susceptibility mapping (QSM). Methods: EOAD patients prospectively underwent MRI on a 3-T scanner and concomitant clinical and neuropsychological evaluation, between 2016 and 2019. An age-matched control group was constituted of cognitively healthy participants at risk of developing AD. Volumetry of the hippocampus and cerebral cortex was performed on 3DT1 images. EOAD subtypes were defined according to the hippocampal to cortical volume ratio (HV:CTV). Limbic-predominant atrophy (LPMRI) is referred to HV:CTV ratios below the 25th percentile, hippocampal-sparing (HpSpMRI) above the 75th percentile, and typical-AD between the 25th and 75th percentile. Brain iron was estimated using QSM. QSM analyses were made voxel-wise and in 7 regions of interest within deep gray nuclei and limbic structures. Iron distribution in EOAD subtypes and controls was compared using an ANOVA. Results: Sixty-eight EOAD patients and 43 controls were evaluated. QSM values were significantly higher in deep gray nuclei (p < 0.001) and limbic structures (p = 0.04) of EOAD patients compared to controls. Among EOAD subtypes, HpSpMRI had the highest QSM values in deep gray nuclei (p < 0.001) whereas the highest QSM values in limbic structures were observed in LPMRI (p = 0.005). QSM in deep gray nuclei had an AUC = 0.92 in discriminating HpSpMRI and controls. Conclusions: In early-onset Alzheimer’s disease patients, we observed significant variations of iron distribution reflecting the pattern of brain atrophy. Iron overload in deep gray nuclei could help to identify patients with atypical presentation of Alzheimer’s disease. Key Points: • In early-onset AD patients, QSM indicated a significant brain iron overload in comparison with age-matched controls. • Iron load in limbic structures was higher in participants with limbic-predominant subtype. • Iron load in deep nuclei was more important in participants with hippocampal-sparing subtype. © 2022, The Author(s), under exclusive licence to European Society of Radiology
    corecore