884 research outputs found

    The asymmetry of the dimension 2 gluon condensate: the finite temperature case

    Full text link
    In this paper, we continue the work begun in a previous article. We compute, in the formalism of local composite operators, the value of the asymmetry in the dimension two condensate for finite temperatures. We find a positive value for the asymmetry, which disappears when the temperature is increased. We also compute the value of the full dimension two condensate for higher temperatures, and we find that it decreases in absolute value, finally disappearing for sufficiently high temperature. We also comment on the temperature dependence of the electric and magnetic components of the condensate separately. We compare our results with the corresponding lattice date found by Chernodub and Ilgenfritz.Comment: 8 pages, 4 figure

    Effect of the Gribov horizon on the Polyakov loop and vice versa

    Get PDF
    We consider finite temperature SU(2) gauge theory in the continuum formulation, which necessitates the choice of a gauge fixing. Choosing the Landau gauge, the existing gauge copies are taken into account by means of the Gribov-Zwanziger (GZ) quantization scheme, which entails the introduction of a dynamical mass scale (Gribov mass) directly influencing the Green functions of the theory. Here, we determine simultaneously the Polyakov loop (vacuum expectation value) and Gribov mass in terms of temperature, by minimizing the vacuum energy w.r.t. the Polyakov loop parameter and solving the Gribov gap equation. Inspired by the Casimir energy-style of computation, we illustrate the usage of Zeta function regularization in finite temperature calculations. Our main result is that the Gribov mass directly feels the deconfinement transition, visible from a cusp occurring at the same temperature where the Polyakov loop becomes nonzero. In this exploratory work we mainly restrict ourselves to the original Gribov-Zwanziger quantization procedure in order to illustrate the approach and the potential direct link between the vacuum structure of the theory (dynamical mass scales) and (de)confinement. We also present a first look at the critical temperature obtained from the Refined Gribov-Zwanziger approach. Finally, a particular problem for the pressure at low temperatures is reported.Comment: 19 pages, 8 .pdf figures. v2: extended section 3 + extra references; version accepted for publication in EPJ

    SU(2) x U(1) Yang-Mills theories in 3d with Higgs field and Gribov ambiguity

    Get PDF
    We study the structure of the gauge propagators of a 3d version of the electroweak interaction in terms of the Higgs vacuum expectation value., of the non-Abelian gauge coupling g, and of the Abelian gauge coupling g', when nonperturbative effects related to the non-Abelian gauge fixing are introduced by means of an adapted path integral measure. In the perturbative regime of small nonAbelian coupling g and sufficiently large, nu the well-known standard Z and W propagators are recovered, together with a massless photon. In general, depending on the relative magnitudes of g, g' and., we uncover a quite different propagator structure. In a later stage of research, the results here derived can be used to study the associated phase diagram in more depth

    The asymmetry of the dimension 2 gluon condensate: the zero temperature case

    Get PDF
    We provide an algebraic study of the local composite operators A_\mu A_\nu-\delta_{\mu\nu}/d A^2 and A^2, with d=4 the spacetime dimension. We prove that these are separately renormalizable to all orders in the Landau gauge. This corresponds to a renormalizable decomposition of the operator A_\mu A_\nu into its trace and traceless part. We present explicit results for the relevant renormalization group functions to three loop order, accompanied with various tests of these results. We then develop a formalism to determine the zero temperature effective potential for the corresponding condensates, and recover the already known result for \neq 0, together with <A_\mu A_\nu-\delta_{\mu\nu}/d A^2>=0, a nontrivial check that the approach is consistent with Lorentz symmetry. The formalism is such that it is readily generalizable to the finite temperature case, which shall allow a future analytical study of the electric-magnetic symmetry of the condensate, which received strong evidence from recent lattice simulations by Chernodub and Ilgenfritz, who related their results to 3 regions in the Yang-Mills phase diagram.Comment: 25 page

    Double non-perturbative gluon exchange: an update on the soft Pomeron contribution to pp scattering

    Get PDF
    We employ a set of recent, theoretically motivated, fits to non-perturbative unquenched gluon propagators to check in how far double gluon exchange can be used to describe the soft sector of pp scattering data (total and differential cross section). In particular, we use the refined Gribov--Zwanziger gluon propagator (as arising from dealing with the Gribov gauge fixing ambiguity) and the massive Cornwall-type gluon propagator (as motivated from Dyson-Schwinger equations) in conjunction with a perturbative quark-gluon vertex, next to a model based on the non-perturbative quark-gluon Maris-Tandy vertex, popular from Bethe-Salpeter descriptions of hadronic bound states. We compare the cross sections arising from these models with "older" ISR and more recent TOTEM and ATLAS data. The lower the value of total energy \sqrt{s}, the better the results appear to be.Comment: 14 pages, 8 .pdf figures. To appear in Phys.Rev.

    Renormalization aspects of N=1 Super Yang-Mills theory in the Wess-Zumino gauge

    Get PDF
    The renormalization of N=1 Super Yang-Mills theory is analysed in the Wess-Zumino gauge, employing the Landau condition. An all orders proof of the renormalizability of the theory is given by means of the Algebraic Renormalization procedure. Only three renormalization constants are needed, which can be identified with the coupling constant, gauge field and gluino renormalization. The non-renormalization theorem of the gluon-ghost-antighost vertex in the Landau gauge is shown to remain valid in N=1 Super Yang-Mills. Moreover, due to the non-linear realization of the supersymmetry in the Wess-Zumino gauge, the renormalization factor of the gauge field turns out to be different from that of the gluino. These features are explicitly checked through a three loop calculation.Comment: 15 pages, minor text improvements, references added. Version accepted for publication in the EPJ
    • …
    corecore