85 research outputs found

    Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Butanol is a second generation biofuel produced by <it>Clostridium acetobutylicum </it>through acetone-butanol-ethanol (ABE) fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of <it>C. acetobutylicum </it>from ABE fermentation using glucose and xylose to understand the functional mechanisms of <it>C. acetobutylicum </it>proteins involved in butanol production.</p> <p>Results</p> <p>We identified 894 different proteins in <it>C. acetobutylicum </it>from ABE fermentation process by two dimensional - liquid chromatography - tandem mass spectrometry (2D-LC-MS/MS) method. This includes 717 proteins from glucose and 826 proteins from the xylose substrate. A total of 649 proteins were found to be common and 22 significantly differentially expressed proteins were identified between glucose and xylose substrates.</p> <p>Conclusion</p> <p>Our results demonstrate that flagellar proteins are highly up-regulated with glucose compared to xylose substrate during ABE fermentation. Chemotactic activity was also found to be lost with the xylose substrate due to the absence of CheW and CheV proteins. This is the first report on the shotgun proteomic analysis of <it>C. acetobutylicum </it>ATCC 824 in ABE fermentation between glucose and xylose substrate from a single time data point and the number of proteins identified here is more than any other study performed on this organism up to this report.</p

    Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome

    Get PDF
    Diet can influence the composition of the human microbiome, and yet relatively few dietary ingredients have been systematically investigated with respect to their impact on the functional potential of the microbiome. Dietary resistant starch (RS) has been shown to have health benefits, but we lack a mechanistic understanding of the metabolic processes that occur in the gut during digestion of RS. Here, we collected samples during a dietary crossover study with diets containing large or small amounts of RS. We determined the impact of RS on the gut microbiome and metabolic pathways in the gut, using a combination of “omics” approaches, including 16S rRNA gene sequencing, metaproteomics, and metabolomics. This multiomics approach captured changes in the abundance of specific bacterial species, proteins, and metabolites after a diet high in resistant starch (HRS), providing key insights into the influence of dietary interventions on the gut microbiome. The combined data showed that a high-RS diet caused an increase in the ratio of Firmicutes to Bacteroidetes, including increases in relative abundances of some specific members of the Firmicutes and concurrent increases in enzymatic pathways and metabolites involved in lipid metabolism in the gut

    A high-throughput \u3ci\u3ede novo\u3c/i\u3e sequencing approach for shotgun proteomics using high-resolution tandem mass spectrometry

    Get PDF
    Abstract Background High-resolution tandem mass spectra can now be readily acquired with hybrid instruments, such as LTQ-Orbitrap and LTQ-FT, in high-throughput shotgun proteomics workflows. The improved spectral quality enables more accurate de novo sequencing for identification of post-translational modifications and amino acid polymorphisms. Results In this study, a new de novo sequencing algorithm, called Vonode, has been developed specifically for analysis of such high-resolution tandem mass spectra. To fully exploit the high mass accuracy of these spectra, a unique scoring system is proposed to evaluate sequence tags based primarily on mass accuracy information of fragment ions. Consensus sequence tags were inferred for 11,422 spectra with an average peptide length of 5.5 residues from a total of 40,297 input spectra acquired in a 24-hour proteomics measurement of Rhodopseudomonas palustris. The accuracy of inferred consensus sequence tags was 84%. According to our comparison, the performance of Vonode was shown to be superior to the PepNovo v2.0 algorithm, in terms of the number of de novo sequenced spectra and the sequencing accuracy. Conclusions Here, we improved de novo sequencing performance by developing a new algorithm specifically for high-resolution tandem mass spectral data. The Vonode algorithm is freely available for download at http://compbio.ornl.gov/Vonode webcite

    The two-faced T cell epitope: Examining the host-microbe interface with JanusMatrix

    Get PDF
    Advances in the field of T cell immunology have contributed to the understanding that cross-reactivity is an intrinsic characteristic of the T cell receptor (TCR), and that each TCR can potentially interact with many different T cell epitopes. To better define the potential for TCR cross-reactivity between epitopes derived from the human genome, the human microbiome, and human pathogens, we developed a new immunoinformatics tool, JanusMatrix, that represents an extension of the validated T cell epitope mapping tool, EpiMatrix. Initial explorations, summarized in this synopsis, have uncovered what appear to be important differences in the TCR cross-reactivity of selected regulatory and effector T cell epitopes with other epitopes in the human genome, human microbiome, and selected human pathogens. In addition to exploring the T cell epitope relationships between human self, commensal and pathogen, JanusMatrix may also be useful to explore some aspects of heterologous immunity and to examine T cell epitope relatedness between pathogens to which humans are exposed (Dengue serotypes, or HCV and Influenza, for example). In Hand-Foot-Mouth disease (HFMD) for example, extensive enterovirus and human microbiome cross-reactivity (and limited cross-reactivity with the human genome) seemingly predicts immunodominance. In contrast, more extensive cross-reactivity with proteins contained in the human genome as compared to the human microbiome was observed for selected Treg epitopes. While it may be impossible to predict all immune response influences, the availability of sequence data from the human genome, the human microbiome, and an array of human pathogens and vaccines has made computationally–driven exploration of the effects of T cell epitope cross-reactivity now possible. This is the first description of JanusMatrix, an algorithm that assesses TCR cross-reactivity that may contribute to a means of predicting the phenotype of T cells responding to selected T cell epitopes. Whether used for explorations of T cell phenotype or for evaluating cross-conservation between related viral strains at the TCR face of viral epitopes, further JanusMatrix studies may contribute to developing safer, more effective vaccines

    Ecological distribution and population physiology defined by proteomics in a natural microbial community

    Get PDF
    Community proteomics applied to natural microbial biofilms resolves how the physiology of different populations from a model ecosystem change with measured environmental factors in situ.The initial colonists, Leptospirillum Group II bacteria, persist throughout ecological succession and dominate all communities, a pattern that resembles community assembly patterns in some macroecological systems.Interspecies interactions, and not abiotic environmental factors, demonstrate the strongest correlation to physiological changes of Leptospirillum Group II.Environmental niches of subdominant populations seem to be determined by combinations of specific sets of abiotic environmental factors

    Phage-Induced Expression of CRISPR-Associated Proteins Is Revealed by Shotgun Proteomics in Streptococcus thermophilus

    Get PDF
    The CRISPR/Cas system, comprised of clustered regularly interspaced short palindromic repeats along with their associated (Cas) proteins, protects bacteria and archaea from viral predation and invading nucleic acids. While the mechanism of action for this acquired immunity is currently under investigation, the response of Cas protein expression to phage infection has yet to be elucidated. In this study, we employed shotgun proteomics to measure the global proteome expression in a model system for studying the CRISPR/Cas response in S. thermophilus DGCC7710 infected with phage 2972. Host and viral proteins were simultaneously measured following inoculation at two different multiplicities of infection and across various time points using two-dimensional liquid chromatography tandem mass spectrometry. Thirty-seven out of forty predicted viral proteins were detected, including all proteins of the structural virome and viral effector proteins. In total, 1,013 of 2,079 predicted S. thermophilus proteins were detected, facilitating the monitoring of host protein synthesis changes in response to virus infection. Importantly, Cas proteins from all four CRISPR loci in the S. thermophilus DGCC7710 genome were detected, including loci previously thought to be inactive. Many Cas proteins were found to be constitutively expressed, but several demonstrated increased abundance following infection, including the signature Cas9 proteins from the CRISPR1 and CRISPR3 loci, which are key players in the interference phase of the CRISPR/Cas response. Altogether, these results provide novel insights into the proteomic response of S. thermophilus, specifically CRISPR-associated proteins, upon phage 2972 infection

    A high-throughput de novo sequencing approach for shotgun proteomics using high-resolution tandem mass spectrometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-resolution tandem mass spectra can now be readily acquired with hybrid instruments, such as LTQ-Orbitrap and LTQ-FT, in high-throughput shotgun proteomics workflows. The improved spectral quality enables more accurate <it>de novo </it>sequencing for identification of post-translational modifications and amino acid polymorphisms.</p> <p>Results</p> <p>In this study, a new <it>de novo </it>sequencing algorithm, called Vonode, has been developed specifically for analysis of such high-resolution tandem mass spectra. To fully exploit the high mass accuracy of these spectra, a unique scoring system is proposed to evaluate sequence tags based primarily on mass accuracy information of fragment ions. Consensus sequence tags were inferred for 11,422 spectra with an average peptide length of 5.5 residues from a total of 40,297 input spectra acquired in a 24-hour proteomics measurement of <it>Rhodopseudomonas palustris</it>. The accuracy of inferred consensus sequence tags was 84%. According to our comparison, the performance of Vonode was shown to be superior to the PepNovo v2.0 algorithm, in terms of the number of <it>de novo </it>sequenced spectra and the sequencing accuracy.</p> <p>Conclusions</p> <p>Here, we improved <it>de novo </it>sequencing performance by developing a new algorithm specifically for high-resolution tandem mass spectral data. The Vonode algorithm is freely available for download at <url>http://compbio.ornl.gov/Vonode</url>.</p
    corecore