221 research outputs found

    Mycophenolate mofetil inhibits the development of Coxsackie B3-virus-induced myocarditis in mice

    Get PDF
    BACKGROUND: Viral replication as well as an immunopathological component are assumed to be involved in the development of coxsackie B virus (CBV)-induced myocarditis. We observed that mycophenolic acid (MPA), the active metabolite of the immunosuppressive agent mycophenolate mofetil (MMF), inhibits coxsackie B3 virus (CBV3) replication in primary Human myocardial fibroblasts. We therefore studied whether MMF, which is thus endowed with a direct antiviral as well as immunosuppressive effect, may prevent CBV-induced myocarditis in a murine model. RESULTS: Four week old C3H-mice were infected with CBV3 and received twice daily, for 7 consecutive days (from one day before to 5 days post-virus inoculation) treatment with MMF via oral gavage. Treatment with MMF resulted in a significant reduction in the development of CBV-induced myocarditis as assessed by morphometric analysis, i.e. 78% reduction when MMF was administered at 300 mg/kg/day (p < 0.001), 65% reduction at 200 mg/kg/day (p < 0.001), and 52% reduction at 100 mg/kg/day (p = 0.001). The beneficial effect could not be ascribed to inhibition of viral replication since titers of infectious virus and viral RNA in heart tissue were increased in MMF-treated animals as compared to untreated animals. CONCLUSION: The immunosuppressive agent MMF results in an important reduction of CBV3-induced myocarditis in a murine model

    Functional and biomechanical evaluation of a completely recellularized stentless pulmonary bioprosthesis in sheep

    Get PDF
    ObjectiveIn a previous study we showed that recellularization of a stentless bioprosthetic valve is stimulated 1 month after implantation in the pulmonary position, when its matrix (acellular photo-oxidized bovine pericardium) was preseeded by intraperitoneal implantation during a 3-day period.MethodsThe present study reports on the functional and biomechanical properties of such valves (n = 19) in sheep up to 5 months after implantation. Similar valves (n = 20) that were not intraperitoneally preseeded served as controls.ResultsRecellularization was partial in control valves and excessive in preseeded valves: 66% versus 223% of cellularity of native valves, respectively (P < .05). The valves were endothelialized and contained interstitial cells depositing new matrix (collagens and elastin). However, phenotyping revealed an increased proportion of cells with contractile properties (30%–40% alpha smooth muscle actin+) in both groups. Intraperitoneally seeded valves had thicker and shorter leaflets that were associated with mildly increased peak gradients and regurgitation. Characterization of the matrix properties revealed a gradually degrading matrix (±25% loss of collagen organization at 5 months) and a concomitant alteration of its biomechanical properties, that is, decreased strength, stiffness, and maximum force. However, overall valve function remained intact, and the biomechanical properties of the whole valves were superior to that of the native valves.ConclusionThe ectopic in vivo seeding paradigm provides full recellularization. However, the volume fraction of the cellular phenotypes is not optimal, resulting in inadequate remodeling of the valves

    Oxygenated machine perfusion at room temperature as an alternative for static cold storage in porcine donor hearts

    Get PDF
    Background There is a continued interest in ex situ heart perfusion as an alternative strategy for donor heart preservation. We hypothesize that oxygenated machine perfusion of donor hearts at a temperature that avoids both normothermia and deep hypothermia offers adequate and safe preservation. Methods Cardioplegia-arrested porcine donor hearts were randomly assigned to six hours of preservation using cold storage (CS, n = 5) or machine perfusion using an oxygenated acellular perfusate at 21 degrees C (MP, n = 5). Subsequently, all grafts were evaluated using the Langendorff method for 120 min. Metabolic parameters and histology were analyzed. Systolic function was assessed by contractility and elastance. Diastolic function was assessed by lusitropy and stiffness. Results For both groups, in vivo baseline and post-Langendorff biopsies were comparable, as were lactate difference and myocardial oxygen consumption. Injury markers gradually increased and were comparable. Significant weight gain was seen in MP (p = 0.008). Diastolic function was not impaired in MP, and lusitropy was superior from 30 min up to 90 min of reperfusion. Contractility was superior in MP during the first hour of evaluation. Conclusion We conclude that the initial functional outcome of MP-preserved hearts was transiently superior compared to CS, with no histological injury post-Langendorff. Our machine perfusion strategy could offer feasible and safe storage of hearts prior to transplantation. Future studies are warranted for further optimization

    Quantitative analysis of airway obstruction in lymphangio-leio-myomatosis

    Get PDF
    Lymphangioleiomyomatosis (LAM) is a rare, cystic lung disease with progressive pulmonary function loss caused by progressively proliferating LAM cells. The degree of airway obstruction has not been well investigated within the pathogenesis of LAM. Using a combination of ex vivo computed tomography (CT), microCT and histology, the site and nature of airway obstruction in LAM explant lungs was compared with matched control lungs (n=5 each). The total number of airways per generation, total airway counts, terminal bronchioles number and surface density were compared in LAM versus control. Ex vivo CT analysis demonstrated a reduced number of airways from generation 7 on (p<0.0001) in LAM compared with control, whereas whole-lung microCT analysis confirmed the three- to four-fold reduction in the number of airways. Specimen microCT analysis further demonstrated a four-fold decrease in the number of terminal bronchioles (p=0.0079) and a decreased surface density (p=0.0079). Serial microCT and histology images directly showed the loss of functional airways by collapse of airways on the cysts and filling of the airway by exudate. LAM lungs show a three- to four-fold decrease in the number of (small) airways, caused by cystic destruction which is the likely culprit for the progressive loss of pulmonary function

    Oxygenated machine perfusion at room temperature as an alternative for static cold storage in porcine donor hearts

    Get PDF
    Background There is a continued interest in ex situ heart perfusion as an alternative strategy for donor heart preservation. We hypothesize that oxygenated machine perfusion of donor hearts at a temperature that avoids both normothermia and deep hypothermia offers adequate and safe preservation. Methods Cardioplegia-arrested porcine donor hearts were randomly assigned to six hours of preservation using cold storage (CS, n = 5) or machine perfusion using an oxygenated acellular perfusate at 21 degrees C (MP, n = 5). Subsequently, all grafts were evaluated using the Langendorff method for 120 min. Metabolic parameters and histology were analyzed. Systolic function was assessed by contractility and elastance. Diastolic function was assessed by lusitropy and stiffness. Results For both groups, in vivo baseline and post-Langendorff biopsies were comparable, as were lactate difference and myocardial oxygen consumption. Injury markers gradually increased and were comparable. Significant weight gain was seen in MP (p = 0.008). Diastolic function was not impaired in MP, and lusitropy was superior from 30 min up to 90 min of reperfusion. Contractility was superior in MP during the first hour of evaluation. Conclusion We conclude that the initial functional outcome of MP-preserved hearts was transiently superior compared to CS, with no histological injury post-Langendorff. Our machine perfusion strategy could offer feasible and safe storage of hearts prior to transplantation. Future studies are warranted for further optimization.</p

    The pleural mesothelium and TGF-β1 pathways in restrictive allograft syndrome : a pre-clinical investigation

    Get PDF
    BACKGROUND: Chronic lung allograft dysfunction (CLAD) hampers long-term survival after lung transplantation. Common fibrosis-related mechanisms in idiopathic pulmonary fibrosis and CLAD instigated the consideration of investigating the differential regulation of pleural mesothelium and transforming growth factor-beta(1) (TGF-beta(1)) in restrictive allograft syndrome (RAS). METHODS: TGF-beta(1) was assessed in bronchoalveolar lavage (BAL) fluid using enzyme-linked immunoassay and via immune staining of explant biopsies. To assess the role of the pleura, explanted bronchiolitis obliterans syndrome (BOS) and RAS lungs were compared using computed tomography scans, calretinin stainings, Western blot, and quantititative real-time PCR. Last, a pleural mesothelial cell line was used to assess mesothelial-to-mesenchymal transition and its inhibition. RESULTS: TGF-beta(1) was increased in BAL of RAS patients (p = 0.035), and was present in the (sub) pleural area of biopsies. Explanted RAS lungs demonstrated an increased volume fraction of pleura (p = 0.0004), a higher proportion of calretinin-positive stainings (p = 0.0032), and decreased E-cadherin (p = 0.019) and increased alpha-smooth muscle actin (p = 0.0089) mRNA expression and protein levels in isolated pleural tissue. Moreover, TGF-beta(1) stimulation of pleural mesothelial cells led to a phenotypical switch to mesenchymal cells, accompanied with an increased migratory capacity. Interleukin-1 alpha was able to accentuate TGF-beta(1). induced mesothelial-to-mesenchymal transition. None of the tested drugs could inhibit mesothelial-to-mesenchymal transition at the used concentrations. CONCLUSIONS: Our results support an interplay between TGF-beta(1) and the pleural mesothelium in the pathophysiology of RAS. (C) 2019 International Society for Heart and Lung Transplantation. All rights reserved

    The prognostic value of the hypoxia markers CA IX and GLUT 1 and the cytokines VEGF and IL 6 in head and neck squamous cell carcinoma treated by radiotherapy ± chemotherapy

    Get PDF
    BACKGROUND: Several parameters of the tumor microenvironment, such as hypoxia, inflammation and angiogenesis, play a critical role in tumor aggressiveness and treatment response. A major question remains if these markers can be used to stratify patients to certain treatment protocols. The purpose of this study was to investigate the inter-relationship and the prognostic significance of several biological and clinicopathological parameters in patients with head and neck squamous cell carcinoma (HNSCC) treated by radiotherapy ± chemotherapy. METHODS: We used two subgroups of a retrospective series for which CT-determined tumoral perfusion correlated with local control. In the first subgroup (n = 67), immunohistochemistry for carbonic anhydrase IX (CA IX) and glucose transporter-1 (GLUT-1) was performed on the pretreatment tumor biopsy. In the second subgroup (n = 34), enzyme linked immunosorbent assay (ELISA) was used to determine pretreatment levels of the cytokines vascular endothelial growth factor (VEGF) and interleukin-6 (IL-6) in serum. Correlation was investigated between tumoral perfusion and each of these biological markers, as well as between the markers mutually. The prognostic value of these microenvironmental parameters was also evaluated. RESULTS: For CA IX and GLUT-1, the combined assessment of patients with both markers expressed above the median showed an independent correlation with local control (p = 0.02) and disease-free survival (p = 0.04) with a trend for regional control (p = 0.06). In the second subgroup, IL-6 pretreatment serum level above the median was the only independent predictor of local control (p = 0.009), disease-free survival (p = 0.02) and overall survival (p = 0.005). CONCLUSION: To our knowledge, we are the first to report a link in HNSCC between IL-6 pretreatment serum levels and radioresistance in vivo. This link is supported by the strong prognostic association of pretreatment IL-6 with local control, known to be the most important parameter to judge radiotherapy responses. Furthermore, the combined assessment of CA IX and GLUT-1 correlated independently with prognosis. This is a valuable indication that a combined approach is important in the investigation of prognostic markers

    A robust human norovirus replication model in zebrafish larvae.

    Get PDF
    Human noroviruses (HuNoVs) are the most common cause of foodborne illness, with a societal cost of $60 billion and 219,000 deaths/year. The lack of robust small animal models has significantly hindered the understanding of norovirus biology and the development of effective therapeutics. Here we report that HuNoV GI and GII replicate to high titers in zebrafish (Danio rerio) larvae; replication peaks at day 2 post infection and is detectable for at least 6 days. The virus (HuNoV GII.4) could be passaged from larva to larva two consecutive times. HuNoV is detected in cells of the hematopoietic lineage and the intestine, supporting the notion of a dual tropism. Antiviral treatment reduces HuNoV replication by >2 log10, showing that this model is suited for antiviral studies. Zebrafish larvae constitute a simple and robust replication model that will largely facilitate studies of HuNoV biology and the development of antiviral strategies
    corecore