770 research outputs found

    Sub-nanometer free electrons with topological charge

    Full text link
    The holographic mask technique is used to create freely moving electrons with quantized angular momentum. With electron optical elements they can be focused to vortices with diameters below the nanometer range. The understanding of these vortex beams is important for many applications. Here we present a theory of focused free electron vortices. The agreement with experimental data is excellent. As an immediate application, fundamental experimental parameters like spherical aberration and partial coherence are determined.Comment: 4 pages, 5 figure

    Atomic resolution mapping of phonon excitations in STEM-EELS experiments

    Full text link
    Atomically resolved electron energy-loss spectroscopy experiments are commonplace in modern aberrationcorrected transmission electron microscopes. Energy resolution has also been increasing steadily with the continuous improvement of electron monochromators. Electronic excitations however are known to be delocalised due to the long range interaction of the charged accelerated electrons with the electrons in a sample. This has made several scientists question the value of combined high spatial and energy resolution for mapping interband transitions and possibly phonon excitation in crystals. In this paper we demonstrate experimentally that atomic resolution information is indeed available at very low energy losses around 100 meV expressed as a modulation of the broadening of the zero loss peak. Careful data analysis allows us to get a glimpse of what are likely phonon excitations with both an energy loss and gain part. These experiments confirm recent theoretical predictions on the strong localisation of phonon excitations as opposed to electronic excitations and show that a combination of atomic resolution and recent developments in increased energy resolution will offer great benefit for mapping phonon modes in real space

    Electronically coupled complementary interfaces between perovskite band insulators

    Full text link
    Perovskite oxides exhibit a plethora of exceptional electronic properties, providing the basis for novel concepts of oxide-electronic devices. The interest in these materials is even extended by the remarkable characteristics of their interfaces. Studies on single epitaxial connections between the two wide-bandgap insulators LaAlO3 and SrTiO3 have revealed them to be either high-mobility electron conductors or insulating, depending on the atomic stacking sequences. In the latter case they are conceivably positively charged. For device applications, as well as for basic understanding of the interface conduction mechanism, it is important to investigate the electronic coupling of closely-spaced complementary interfaces. Here we report the successful realization of such electronically coupled complementary interfaces in SrTiO3 - LaAlO3 thin film multilayer structures, in which the atomic stacking sequence at the interfaces was confirmed by quantitative transmission electron microscopy. We found a critical separation distance of 6 perovskite unit cell layers, corresponding to approximately 2.3 nm, below which a decrease of the interface conductivity and carrier density occurs. Interestingly, the high carrier mobilities characterizing the separate electron doped interfaces are found to be maintained in coupled structures down to sub-nanometer interface spacing

    Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation

    Get PDF
    The Amazon and Congo basins are the two largest continuous blocks of tropical forest with a central role for global biogeochemical cycles and ecology. However, both biomes differ in structure and species richness and composition. Understanding future directions of the response of both biomes to environmental change is paramount. We used one elevational gradient on both continents to investigate functional and stoichiometric trait shifts of tropical forest in South America and Africa. We measured community-weighted functional canopy traits and canopy and topsoil delta N-15 signatures. We found that the functional forest composition response along both transects was parallel, with a shift towards more nitrogen-conservative species at higher elevations. Moreover, canopy and topsoil delta N-15 signals decreased with increasing altitude, suggesting a more conservative N cycle at higher elevations. This cross-continental study provides empirical indications that both South American and African tropical forest show a parallel response with altitude, driven by nitrogen availability along the elevational gradients, which in turn induces a shift in the functional forest composition. More standardized research, and more research on other elevational gradients is needed to confirm our observations

    Towards the production of 50'000 tonnes of low-carbon steel sheet for the LHC superconducting dipole and quadrupole magnets

    Get PDF
    A total of 50'000 tonnes of low-carbon steel sheet has been ordered for the LHC main magnets. After three years of production, about 10'000 tonnes of steel sheet have been produced by Cockerill-Sambre Groupe Usinor. This paper gives a summary of the manufacturing process and improvements implemented as well as an overview of the difficulties encountered during this production. Preliminary statistics obtained for the mechanical and magnetic steel properties are presented

    Задачи глобальной экологии

    Get PDF
    Changes in the size distribution and composition of bimetallic Pd-Au nanoclusters have been observed after hydrogen exposure. This effect is caused by hydrogen-induced Ostwald ripening whereby the hydrogen reduces the binding energy of the cluster atoms leading to their detachment from the cluster. The composition changes due to a difference in mobility of the detached palladium and gold atoms on the surface. Fast palladium atoms contribute to the formation of larger nanoclusters, while the slower gold atoms are confined to the smaller nanoclusters. These transformations in the Pd-Au nanocluster size and composition set a limit for chemical reactions in which such nanoclusters are involved together with hydrogen

    The 0 and the pi phase Josephson coupling through an insulating barrier with magnetic impurities

    Full text link
    We have studied temperature and field dependencies of the critical current ICI_{C} in the Nb-Fe0.1_{0.1}Si0.9_{0.9}-Nb Josephson junction with tunneling barrier formed by paramagnetic insulator. We demonstrate that in these junctions the co-existence of both the 0 and the π\pi states within one tunnel junction takes place which leads to the appearance of a sharp cusp in the temperature dependence IC(T)I_{C}(T) similar to the IC(T)I_{C}(T) cusp found for the 0π0-\pi transition in metallic π\pi junctions. This cusp is not related to the 0π0-\pi temperature induced transition itself, but is caused by the different temperature dependencies of the opposing 0 and π\pi supercurrents through the barrier.Comment: Accepted in Physical Review
    corecore