218 research outputs found

    Characterization of sediment dynamics in an estuary environment using acoustic techniques

    Get PDF
    In recent years, acoustic-based methods have been developed to characterize the dynamical behavior of loose sediments and bed deposits in very shallow water environments. In this paper, we present preliminary results on the estimation of the dynamic changes in an estuarine environment using data from dual-frequency echosounding at high resolution and contemporaneous hydrological measurements including suspended matter concentration, density subbottom profiling, and data assimilation based on a sediment transport model. Those measurements are being conducted in the lower estuary of the Scheldt (Belgium) at the Sint Anna site where strong tide and season-dependent phenomena can be observed. This allows us to construct a ground-truthed, time-dependent geoacoustic model of the environment, i.e., a characterization of sound speed, density, and attenuation in function of time and depth. Synthetic acoustic data generated by that model will then be used to test inversion methods for monitoring sediment dynamics in real time

    A Realistic Validation Study of a New Nitrogen Multiple-Breath Washout System

    Get PDF
    Background For reliable assessment of ventilation inhomogeneity, multiple-breath washout (MBW) systems should be realistically validated. We describe a new lung model for in vitro validation under physiological conditions and the assessment of a new nitrogen (N2)MBW system. Methods The N2MBW setup indirectly measures the N2 fraction (FN2) from main-stream carbon dioxide (CO2) and side-stream oxygen (O2) signals: FN2 = 1−FO2−FCO2−FArgon. For in vitro N2MBW, a double chamber plastic lung model was filled with water, heated to 37°C, and ventilated at various lung volumes, respiratory rates, and FCO2. In vivo N2MBW was undertaken in triplets on two occasions in 30 healthy adults. Primary N2MBW outcome was functional residual capacity (FRC). We assessed in vitro error (√[difference]2) between measured and model FRC (100–4174 mL), and error between tests of in vivo FRC, lung clearance index (LCI), and normalized phase III slope indices (Sacin and Scond). Results The model generated 145 FRCs under BTPS conditions and various breathing patterns. Mean (SD) error was 2.3 (1.7)%. In 500 to 4174 mL FRCs, 121 (98%) of FRCs were within 5%. In 100 to 400 mL FRCs, the error was better than 7%. In vivo FRC error between tests was 10.1 (8.2)%. LCI was the most reproducible ventilation inhomogeneity index. Conclusion The lung model generates lung volumes under the conditions encountered during clinical MBW testing and enables realistic validation of MBW systems. The new N2MBW system reliably measures lung volumes and delivers reproducible LCI values

    Cryptoferromagnetic state in superconductor-ferromagnet multilayers

    Full text link
    We study a possibility of a non-homogeneous magnetic order (cryptoferromagnetic state) in heterostructures consisting of a bulk superconductor and a ferromagnetic thin layer that can be due to the influence of the superconductor. The exchange field in the ferromagnet may be strong and exceed the inverse mean free time. A new approach based on solving the Eilenberger equations in the ferromagnet and the Usadel equations in the superconductor is developed. We derive a phase diagram between the cryptoferromagnetic and ferromagnetic states and discuss the possibility of an experimental observation of the CF state in different materials.Comment: 4 pages, 1 figur

    Giant positive magnetoresistance in metallic VOx thin films

    Full text link
    We report on giant positive magnetoresistance effect observed in VOx thin films, epitaxially grown on SrTiO3 substrate. The MR effect depends strongly on temperature and oxygen content and is anisotropic. At low temperatures its magnitude reaches 70% in a magnetic field of 5 T. Strong electron-electron interactions in the presence of strong disorder may qualitatively explain the results. An alternative explanation, related to a possible magnetic instability, is also discussed.Comment: 4 pages, 5 figures included in the text, references update

    Theory of proximity effect in superconductor/ferromagnet heterostructures

    Full text link
    We present a microscopic theory of proximity effect in the ferromagnet/superconductor/ferromagnet (F/S/F) nanostructures where S is s-wave low-T_c superconductor and F's are layers of 3d transition ferromagnetic metal. Our approach is based on the solution of Gor'kov equations for the normal and anomalous Green's functions together with a self-consistent evaluation of the superconducting order parameter. We take into account the elastic spin-conserving scattering of the electrons assuming s-wave scattering in the S layer and s-d scattering in the F layers. In accordance with the previous quasiclassical theories, we found that due to exchange field in the ferromagnet the anomalous Green's function F(z) exhibits the damping oscillations in the F-layer as a function of distance z from the S/F interface. In the given model a half of period of oscillations is determined by the length \xi_m^0 = \pi v_F/E_ex, where v_F is the Fermi velocity and E_ex is the exchange field, while damping is governed by the length l_0 = (1/l_{\uparrow} + 1/l_{\downarrow})^{-1} with l_{\uparrow} and l_{\downarrow} being spin-dependent mean free paths in the ferromagnet. The superconducting transition temperature T_c(d_F) of the F/S/F trilayer shows the damping oscillations as a function of the F-layer thickness d_F with period \xi_F = \pi/\sqrt{m E_ex}, where m is the effective electron mass. We show that strong spin-conserving scattering either in the superconductor or in the ferromagnet significantly suppresses these oscillations. The calculated T_c(d_F) dependences are compared with existing experimental data for Fe/Nb/Fe trilayers and Nb/Co multilayers.Comment: 13 pages, REVTeX4, 8 PS-figures; improved version, submitted to PR

    Depairing currents in the superconductor/ferromagnet proximity system Nb/Fe

    Get PDF
    We have investigated the behaviour of the depairing current J_{dp} in ferromagnet/superconductor/ferromagnet (F/S/F) trilayers as function of the thickness d_s of the superconducting layers. Theoretically, J_{dp} depends on the superconducting order parameter or the pair density function, which is not homogeneous across the film due to the proximity effect. We use a proximity effect model with two parameters (proximity strength and interface transparency), which can also describe the dependence of the superconducting transition temperature T_c on d_s. We compare the computations with the experimentally determined zero-field critical current J_{c0} of small strips (typically 5~ \mu m wide) of Fe/Nb/Fe trilayers with varying thickness d_{Nb} of the Nb layer. Near T_c the temperature dependence J_{c0}(T) is in good agreement with the expected behaviour, which allows extrapolation to T = 0. Both the absolute values of J_{c0}(0) and the dependence on d_{Nb} agree with the expectations for the depairing current. We conclude that J_{dp} is correctly determined, notwithstanding the fact that the strip width is larger than both the superconducting penetration depth and the superconducting coherence length, and that J_{dp}(d_s) is correctly described by the model.Comment: 10 pages, 5 figures, submitted to PR

    Ferromagnetic/superconducting proximity effect in La0.7Ca0.3MnO3 / YBa2Cu3O7 superlattices

    Get PDF
    We study the interplay between magnetism and superconductivity in high quality YBa2Cu3O7 (YBCO) / La0.7Ca0.3MnO3(LCMO)superlattices. We find evidence for the YBCO superconductivity depression in presence of the LCMO layers. We show that due to its short coherence length superconductivity survives in the YBCO down to much smaller thickness in presence of the magnetic layer than in low Tc superconductors. We also find that for a fixed thickness of the superconducting layer, superconductivity is depressed over a thickness interval of the magnetic layer in the 100 nm range. This is a much longer length scale than that predicted by the theory of ferromagnetic/superconducting proximity effect.Comment: 10 pages + 5 figures, submitted to Phys. Rev.

    Proximity effect, quasiparticle transport, and local magnetic moment in ferromagnet-d-wave superconductor junctions

    Full text link
    The proximity effect, quasiparticle transport, and local magnetic moment in ferromagnet--d-wave superconductor junctions with {110}-oriented interface are studied by solving self-consistently the Bogoliubov-de Gennes equations within an extended Hubbard model. It is found that the proximity induced order parameter oscillates in the ferromagnetic region. The modulation period is shortened with the increased exchange field while the oscillation amplitude is depressed by the interfacial scattering. With the determined superconducting energy gap, a transfer matrix method is proposed to compute the subgap conductance within a scattering approach. Many novel features including the zero-bias conductance dip and splitting are exhibited with appropriate values of the exchange field and interfacial scattering strength. The conductance spectrum can be influenced seriously by the spin-flip interfacial scattering. In addition, a sizable local magnetic moment near the {110}-oriented surface of the d-wave superconductor is discussed.Comment: 10 pages, 16 ps-figures, to appear in Phys. Rev.

    A Systematic Approach to Multiple Breath Nitrogen Washout Test Quality

    Get PDF
    Background: Accurate estimates of multiple breath washout (MBW) outcomes require correct operation of the device, appropriate distraction of the subject to ensure they breathe in a manner representative of their relaxed tidal breathing pattern, and appropriate interpretation of the acquired data. Based on available recommendations for an acceptable MBW test, we aimed to develop a protocol to systematically evaluate MBW measurements based on these criteria. Methods: 50MBWtest occasions were systematically reviewed for technical elements and whether the breathing pattern was representative of relaxed tidal breathing by an experienced MBW operator. The impact of qualitative and quantitative criteria on inter-observer agreement was assessed across eight MBW operators (n = 20 test occasions, compared using a Kappa statistic). Results: Using qualitative criteria, 46/168 trials were rejected: 16.6%were technically unacceptable and 10.7% were excluded due to inappropriate breathing pattern. Reviewer agreement was good using qualitative criteria and further improved with quantitative criteria from (κ = 0.53– 0.83%) to (κ 0.73–0.97%), but at the cost of exclusion of further test occasions in this retrospective data analysis. Conclusions: The application of the systematic review improved inter-observer agreement but did not affect reported MBW outcomes

    Tidal Volume Single Breath Washout of Two Tracer Gases - A Practical and Promising Lung Function Test

    Get PDF
    Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF(6)) and helium (He) using an ultrasonic flowmeter (USFM)
    • …
    corecore