283 research outputs found

    Molecular basis for modulation of the p53 target selectivity by KLF4

    Get PDF
    The tumour suppressor p53 controls transcription of various genes involved in apoptosis, cell-cycle arrest, DNA repair and metabolism. However, its DNA-recognition specificity is not nearly sufficient to explain binding to specific locations in vivo. Here, we present evidence that KLF4 increases the DNA-binding affinity of p53 through the formation of a loosely arranged ternary complex on DNA. This effect depends on the distance between the response elements of KLF4 and p53. Using nuclear magnetic resonance and fluorescence techniques, we found that the amino-terminal domain of p53 interacts with the KLF4 zinc fingers and mapped the interaction site. The strength of this interaction was increased by phosphorylation of the p53 N-terminus, particularly on residues associated with regulation of cell-cycle arrest genes. Taken together, the cooperative binding of KLF4 and p53 to DNA exemplifies a regulatory mechanism that contributes to p53 target selectivity

    Accurate prediction of gene expression by integration of DNA sequence statistics with detailed modeling of transcription regulation

    Get PDF
    Gene regulation involves a hierarchy of events that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. The effects of DNA sequence on these processes have typically been studied based either on its quantitative connection with single-domain binding free energies or on empirical rules that combine different DNA motifs to predict gene expression trends on a genomic scale. The middle-point approach that quantitatively bridges these two extremes, however, remains largely unexplored. Here, we provide an integrated approach to accurately predict gene expression from statistical sequence information in combination with detailed biophysical modeling of transcription regulation by multidomain binding on multiple DNA sites. For the regulation of the prototypical lac operon, this approach predicts within 0.3-fold accuracy transcriptional activity over a 10,000-fold range from DNA sequence statistics for different intracellular conditions.Comment: 15 pages, 5 figure
    • …
    corecore