950 research outputs found

    Analytic Relations between Localizable Entanglement and String Correlations in Spin Systems

    Full text link
    We study the relation between the recently defined localizable entanglement and generalized correlations in quantum spin systems. Differently from the current belief, the localizable entanglement is always given by the average of a generalized string. Using symmetry arguments we show that in most spin 1/2 and spin 1 systems the localizable entanglement reduces to the spin-spin or string correlations, respectively. We prove that a general class of spin 1 systems, which includes the Heisenberg model, can be used as perfect quantum channel. These conclusions are obtained in analytic form and confirm some results found previously on numerical grounds.Comment: 5 pages, RevTeX

    Spin Chains in an External Magnetic Field. Closure of the Haldane Gap and Effective Field Theories

    Full text link
    We investigate both numerically and analytically the behaviour of a spin-1 antiferromagnetic (AFM) isotropic Heisenberg chain in an external magnetic field. Extensive DMRG studies of chains up to N=80 sites extend previous analyses and exhibit the well known phenomenon of the closure of the Haldane gap at a lower critical field H_c1. We obtain an estimate of the gap below H_c1. Above the lower critical field, when the correlation functions exhibit algebraic decay, we obtain the critical exponent as a function of the net magnetization as well as the magnetization curve up to the saturation (upper critical) field H_c2. We argue that, despite the fact that the SO(3) symmetry of the model is explicitly broken by the field, the Haldane phase of the model is still well described by an SO(3) nonlinear sigma-model. A mean-field theory is developed for the latter and its predictions are compared with those of the numerical analysis and with the existing literature.Comment: 11 pages, 4 eps figure

    Long-distance entanglement and quantum teleportation in XX spin chains

    Full text link
    Isotropic XX models of one-dimensional spin-1/2 chains are investigated with the aim to elucidate the formal structure and the physical properties that allow these systems to act as channels for long-distance, high-fidelity quantum teleportation. We introduce two types of models: I) open, dimerized XX chains, and II) open XX chains with small end bonds. For both models we obtain the exact expressions for the end-to-end correlations and the scaling of the energy gap with the length of the chain. We determine the end-to-end concurrence and show that model I) supports true long-distance entanglement at zero temperature, while model II) supports {\it ``quasi long-distance''} entanglement that slowly falls off with the size of the chain. Due to the different scalings of the gaps, respectively exponential for model I) and algebraic in model II), we demonstrate that the latter allows for efficient qubit teleportation with high fidelity in sufficiently long chains even at moderately low temperatures.Comment: 9 pages, 6 figure

    Low mass star formation and subclustering in the HII regions RCW 32, 33 and 27 of the Vela Molecular Ridge. A photometric diagnostics to identify M-type stars

    Get PDF
    Most stars born in clusters and recent results suggest that star formation (SF) preferentially occurs in subclusters. Studying the morphology and SF history of young clusters is crucial to understanding early SF. We identify the embedded clusters of young stellar objects (YSOs) down to M stars, in the HII regions RCW33, RCW32 and RCW27 of the Vela Molecular Ridge. Our aim is to characterise their properties, such as morphology and extent of the clusters in the three HII regions, derive stellar ages and the connection of the SF history with the environment. Through public photometric surveys such as Gaia, VPHAS, 2MASS and Spitzer/GLIMPSE, we identify YSOs with IR, Halpha and UV excesses, as signature of circumstellar disks and accretion. In addition, we implement a method to distinguish M dwarfs and giants, by comparing the reddening derived in several optical/IR color-color diagrams, assuming suitable theoretical models. Since this diagnostic is sensitive to stellar gravity, the procedure allows us to identify pre-main sequence stars. We find a large population of YSOs showing signatures of circumstellar disks with or without accretion. In addition, with the new technique of M-type star selection, we find a rich population of young M stars with a spatial distribution strongly correlated to the more massive population. We find evidence of three young clusters, with different morphology. In addition, we identify field stars falling in the same region, by securely classifying them as giants and foreground MS stars. We identify the embedded population of YSOs, down to about 0.1 Msun, associated with the HII regions RCW33, RCW32 and RCW27 and the clusters Vela T2, Cr197 and Vela T1, respectively, showing very different morphologies. Our results suggest a decreasing SF rate in Vela T2 and triggered SF in Cr197 and Vela T1.Comment: Accepted for publication in A&A; 20 pages, 22 figures, 6 table

    Vibration Serviceability Assessment of a Historic Suspension Footbridge

    Get PDF
    Experimental and numerical studies for the structural and vibration serviceability assessment of a historic suspension footbridge adopting non-invasive surveys and low-cost equipment are presented. Field surveys have been carried out to determine geometric properties, ambient vibration tests have been performed to estimate the dynamic properties, and the dynamic response of the footbridge under the action of a single crossing pedestrian has been recorded. Based on field surveys, a 3D Finite Element model was built and was then calibrated against ambient vibration test results. The experimentally-measured maximum acceleration under the action of one crossing pedestrian is compared with the ones obtained numerically and analytically. Furthermore, vibration serviceability assessment under multi-pedestrian loading is carried out, adopting the simplified procedure recommended by a recent guideline. Results show that low-cost non-invasive dynamic testing is suitable to correctly identify the footbridge vertical natural frequencies and mode shapes, including higher-order ones, and to draw considerations about the state of degradation of the structure. Moreover, the level of vibration under the action of a single pedestrian can be estimated with sufficient accuracy using a simplified loading model, provided that the modal damping ratio is properly tuned

    CSI 2264: Simultaneous optical and X-ray variability in pre-Main Sequence stars. I: Time resolved X-ray spectral analysis during optical dips and accretion bursts in stars with disks

    Get PDF
    Pre-main sequence stars are variable sources. In stars with disks, this variability is related to the morphology of the inner circumstellar region (<0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264. In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are analyzed in two different samples. In stars with variable extinction, we look for a simultaneous increase of optical extinction and X-ray absorption during the optical dips; in stars with accretion bursts, we search for soft X-ray emission and increasing X-ray absorption during the bursts. Results. We find evidence for coherent optical and X-ray flux variability among the stars with variable extinction. In 9/24 stars with optical dips, we observe a simultaneous increase of X-ray absorption and optical extinction. In seven dips, it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5/20 stars with optical accretion bursts, we observe increasing soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts, since favorable geometric configurations are required. The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts, we observe on average a larger soft X-ray spectral component not observed in non accreting stars.Comment: Accepted for publication by Astronomy & Astrophysic

    Rapidly-converging methods for the location of quantum critical points from finite-size data

    Full text link
    We analyze in detail, beyond the usual scaling hypothesis, the finite-size convergence of static quantities toward the thermodynamic limit. In this way we are able to obtain sequences of pseudo-critical points which display a faster convergence rate as compared to currently used methods. The approaches are valid in any spatial dimension and for any value of the dynamic exponent. We demonstrate the effectiveness of our methods both analytically on the basis of the one dimensional XY model, and numerically considering c = 1 transitions occurring in non integrable spin models. In particular, we show that these general methods are able to locate precisely the onset of the Berezinskii-Kosterlitz-Thouless transition making only use of ground-state properties on relatively small systems.Comment: 9 pages, 2 EPS figures, RevTeX style. Updated to published versio
    corecore