2,737 research outputs found

    Elastic precession of electronic spin states in interacting integer quantum Hall edge channels

    Full text link
    We consider the effect of Coulomb interactions in the propagation of electrons, prepared in arbitrary spin states, on chiral edge channels in the integer quantum Hall regime. Electrons are injected and detected at the same energy at different locations of the Hall bar, which is modeled as a chiral Tomonaga-Luttinger liquid. The current is computed perturbatively in the tunneling amplitudes, within a non-crossing approximation using exact solutions of the interacting Green's functions. In the case of different channel velocities, the spin precession effect is evaluated, and the role of interaction parameters and wavevectors is discussed.Comment: 5 pages, 3 figure

    Action minimizing orbits in the n-body problem with simple choreography constraint

    Full text link
    In 1999 Chenciner and Montgomery found a remarkably simple choreographic motion for the planar 3-body problem (see \cite{CM}). In this solution 3 equal masses travel on a eight shaped planar curve; this orbit is obtained minimizing the action integral on the set of simple planar choreographies with some special symmetry constraints. In this work our aim is to study the problem of nn masses moving in \RR^d under an attractive force generated by a potential of the kind 1/rα1/r^\alpha, α>0\alpha >0, with the only constraint to be a simple choreography: if q1(t),...,qn(t)q_1(t),...,q_n(t) are the nn orbits then we impose the existence of x \in H^1_{2 \pi}(\RR,\RR^d) such that q_i(t)=x(t+(i-1) \tau), i=1,...,n, t \in \RR, where τ=2π/n\tau = 2\pi / n. In this setting, we first prove that for every d,n \in \NN and α>0\alpha>0, the lagrangian action attains its absolute minimum on the planar circle. Next we deal with the problem in a rotating frame and we show a reacher phenomenology: indeed while for some values of the angular velocity minimizers are still circles, for others the minima of the action are not anymore rigid motions.Comment: 24 pages; 4 figures; submitted to Nonlinearit

    Synergistic dual positive feedback loops established by molecular sequestration generate robust bimodal response

    Get PDF
    Feedback loops are ubiquitous features of biological networks and can produce significant phenotypic heterogeneity, including a bimodal distribution of gene expression across an isogenic cell population. In this work, a combination of experiments and computational modeling was used to explore the roles of multiple feedback loops in the bimodal, switch-like response of the Saccharomyces cerevisiae galactose regulatory network. Here, we show that bistability underlies the observed bimodality, as opposed to stochastic effects, and that two unique positive feedback loops established by Gal1p and Gal3p, which both regulate network activity by molecular sequestration of Gal80p, induce this bimodality. Indeed, systematically scanning through different single and multiple feedback loop knockouts, we demonstrate that there is always a concentration regime that preserves the system’s bimodality, except for the double deletion of GAL1 and the GAL3 feedback loop, which exhibits a graded response for all conditions tested. The constitutive production rates of Gal1p and Gal3p operate as bifurcation parameters because variations in these rates can also abolish the system’s bimodal response. Our model indicates that this second loss of bistability ensues from the inactivation of the remaining feedback loop by the overexpressed regulatory component. More broadly, we show that the sequestration binding affinity is a critical parameter that can tune the range of conditions for bistability in a circuit with positive feedback established by molecular sequestration. In this system, two positive feedback loops can significantly enhance the region of bistability and the dynamic response time

    Experimental evidence of antiproton reflection by a solid surface

    Full text link
    We report here experimental evidence of the reflection of a large fraction of a beam of low energy antiprotons by an aluminum wall. This derives from the analysis of a set of annihilations of antiprotons that come to rest in rarefied helium gas after hitting the end wall of the apparatus. A Monte Carlo simulation of the antiproton path in aluminum indicates that the observed reflection occurs primarily via a multiple Rutherford-style scattering on Al nuclei, at least in the energy range 1-10 keV where the phenomenon is most visible in the analyzed data. These results contradict the common belief according to which the interactions between matter and antimatter are dominated by the reciprocally destructive phenomenon of annihilation.Comment: 5 pages with 5 figure

    Edge channel mixing induced by potential steps in an integer quantum Hall system

    Full text link
    We investigate the coherent mixing of co-propagating edge channels in a quantum Hall bar produced by step potentials. In the case of two edge channels it is found that, although a single step induces only a few percent mixing, a series of steps could yield 50% mixing. In addition, a strong mixing is found when the potential height of a single step allows a different number of edge channels on the two sides of the step. Charge density probability has been also calculated even for the case where the step is smoothened.Comment: final version: 7 pages, 6 figure

    Limits on the low energy antinucleon-nucleus annihilations from the Heisenberg principle

    Full text link
    We show that the quantum uncertainty principle puts some limits on the effectiveness of the antinucleon-nucleus annihilation at very low energies. This is caused by the fact that the realization a very effective short-distance reaction process implies information on the relative distance of the reacting particles. Some quantitative predictions are possible on this ground, including the approximate A-independence of antinucleon-nucleus annihilation rates.Comment: 10 pages, no figure

    Coulomb corrections to low energy antiproton annihilation cross sections on protons and nuclei

    Get PDF
    We calculate, in a systematic way, the enhancement effect on antiproton-proton and antiproton-nucleus annihilation cross sections at low energy due to the initial state electrostatic interaction between the projectile and the target nucleus. This calculation is aimed at future comparisons between antineutron and antiproton annihilation rates on different targets, for the extraction of pure isospin channels.Comment: 18 pages, 4 figures (latex format
    corecore