226 research outputs found
Characterization of metabolic profiles and lipopolysaccharide effects on porcine vascular wall mesenchymal stem cells
The link between metabolic remodeling and stem cell fate is still unclear. To explore this topic, the metabolic profile of porcine vascular wall mesenchymal stem cells (pVW-MSCs) was investigated. At the first and second cell passages, pVW-MSCs exploit both glycolysis and cellular respiration to synthesize adenosine triphosphate (ATP), but in the subsequent (third to eighth) passages they do not show any mitochondrial ATP turnover. Interestingly, when the first passage pVW-MSCs are exposed to 0.1 or 10 ÎĽg/ml lipopolysaccharides (LPSs) for 4 hr, even if ATP synthesis is prevented, the spare respiratory capacity is retained and the glycolytic capacity is unaffected. In contrast, the exposure of pVW-MSCs at the fifth passage to 10 ÎĽg/ml LPS stimulates mitochondrial ATP synthesis. Flow cytometry rules out any reactive oxygen species (ROS) involvement in the LPS effects, thus suggesting that the pVW-MSC metabolic pattern is modulated by culture conditions via ROS-independent mechanisms
Electronic nose and isotope ratio mass spectrometry in combination with chemometrics for the characterization of the geographical origin of Italian sweet cherries
Sweet cherries from two Italian regions, Apulia and Emilia Romagna, were analysed using electronic nose
(EN) and isotope ratio mass spectrometry (IRMS), with the aim of distinguishing them according to their
geographic origin. The data were elaborated by statistical techniques, examining the EN and IRMS datasets
both separately and in combination. Preliminary exploratory overviews were performed and then
linear discriminant analyses (LDA) were used for classification. Regarding EN, different approaches for
variable selection were tested, and the most suitable strategies were highlighted. The LDA classification
results were expressed in terms of recognition and prediction abilities and it was found that both EN and
IRMS performed well, with IRMS showing better cross-validated prediction ability (91.0%); the EN–IRMS
combination gave slightly better results (92.3%). In order to validate the final results, the models were
tested using an external set of samples with excellent results
Low-Protein Diets in Diabetic Chronic Kidney Disease (CKD) Patients: Are They Feasible and Worth the Effort?
Low-protein diets (LPDs) are often considered as contraindicated in diabetic patients, and are seldom studied. The aim of this observational study was to provide new data on this issue. It involved 149 diabetic and 300 non-diabetic patients who followed a LPD, with a personalized approach aimed at moderate protein restriction (0.6 g/day). Survival analysis was performed according to Kaplan–Meier, and multivariate analysis with Cox model. Diabetic versus non-diabetic patients were of similar age (median 70 years) and creatinine levels at the start of the diet (2.78 mg/dL vs. 2.80 mg/dL). There was higher prevalence of nephrotic proteinuria in diabetic patients (27.52% vs. 13.67%, p = 0.002) as well as comorbidity (median Charlson index 8 vs. 6 p = 0.002). Patient survival was lower in diabetic patients, but differences levelled off considering only cases with Charlson index > 7, the only relevant covariate in Cox analysis. Dialysis-free survival was superimposable in the setting of good compliance (Mitch formula: 0.47 g/kg/day in both groups): about 50% of the cases remained dialysis-free 2 years after the first finding of e-GFR (estimated glomerular filtration rate) < 15 mL/min, and 1 year after reaching e-GFR < 10 mL/min. In patients with type 2 diabetes, higher proteinuria was associated with mortality and initiation of dialysis. In conclusion, moderately restricted LPDs allow similar results in diabetic and non non-diabetic patients with similar comorbidity
Polymorphic post-transplant lymphoproliferative disorder in a gilt
N.A. (case report, no abstract
Performance of 13 crop simulation models and their ensemble for simulating four field crops in Central Europe
The main aim of the current study was to present the abilities of widely used crop models to simulate four different field crops (winter wheat, spring barley, silage maize and winter oilseed rape). The 13 models were tested under Central European conditions represented by three locations in the Czech Republic, selected using temperature and precipitation gradients for the target crops in this region. Based on observed crop phenology and yield from 1991 to 2010, performances of individual models and their ensemble were analyzed. Modelling of anthesis and maturity was generally best simulated by the ensemble median (EnsMED) compared to the ensemble mean and individual models. The yield was better simulated by the best models than estimated by an ensemble. Higher accuracy was achieved for spring crops, with the best results for silage maize, while the lowest accuracy was for winter oilseed rape according to the index of agreement (IA). Based on EnsMED, the root mean square errors (RMSEs) for yield was 1365 kg/ha for winter wheat, 1105 kg/ha for spring barley, 1861 kg/ha for silage maize and 969 kg/ha for winter oilseed rape. The AQUACROP and EPIC models performed best in terms of spread around the line of best fit (RMSE, IA). In some cases, the individual models failed. For crop rotation simulations, only models with reasonable accuracy (i.e. without failures) across all included crops within the target environment should be selected. Application crop models ensemble is one way to increase the accuracy of predictions, but lower variability of ensemble outputs was confirmed.OA-hybri
Frequency of left ventricular hypertrophy in non-valvular atrial fibrillation
Left ventricular hypertrophy (LVH) is significantly related to adverse clinical outcomes in patients at high risk of cardiovascular events. In patients with atrial fibrillation (AF), data on LVH, that is, prevalence and determinants, are inconsistent mainly because of different definitions and heterogeneity of study populations. We determined echocardiographic-based LVH prevalence and clinical factors independently associated with its development in a prospective cohort of patients with non-valvular (NV) AF. From the "Atrial Fibrillation Registry for Ankle-brachial Index Prevalence Assessment: Collaborative Italian Study" (ARAPACIS) population, 1,184 patients with NVAF (mean age 72 \ub1 11 years; 56% men) with complete data to define LVH were selected. ARAPACIS is a multicenter, observational, prospective, longitudinal on-going study designed to estimate prevalence of peripheral artery disease in patients with NVAF. We found a high prevalence of LVH (52%) in patients with NVAF. Compared to those without LVH, patients with AF with LVH were older and had a higher prevalence of hypertension, diabetes, and previous myocardial infarction (MI). A higher prevalence of ankle-brachial index 640.90 was seen in patients with LVH (22 vs 17%, p = 0.0392). Patients with LVH were at significantly higher thromboembolic risk, with CHA2DS2-VASc 652 seen in 93% of LVH and in 73% of patients without LVH (p <0.05). Women with LVH had a higher prevalence of concentric hypertrophy than men (46% vs 29%, p = 0.0003). Logistic regression analysis demonstrated that female gender (odds ratio [OR] 2.80, p <0.0001), age (OR 1.03 per year, p <0.001), hypertension (OR 2.30, p <0.001), diabetes (OR 1.62, p = 0.004), and previous MI (OR 1.96, p = 0.001) were independently associated with LVH. In conclusion, patients with NVAF have a high prevalence of LVH, which is related to female gender, older age, hypertension, and previous MI. These patients are at high thromboembolic risk and deserve a holistic approach to cardiovascular prevention
Metabolic Programming during Lactation Stimulates Renal Na+ Transport in the Adult Offspring Due to an Early Impact on Local Angiotensin II Pathways
BACKGROUND: Several studies have correlated perinatal malnutrition with diseases in adulthood, giving support to the programming hypothesis. In this study, the effects of maternal undernutrition during lactation on renal Na(+)-transporters and on the local angiotensin II (Ang II) signaling cascade in rats were investigated. METHODOLOGY/PRINCIPAL FINDINGS: Female rats received a hypoproteic diet (8% protein) throughout lactation. Control and programmed offspring consumed a diet containing 20% protein after weaning. Programming caused a decrease in the number of nephrons (35%), in the area of the Bowman's capsule (30%) and the capillary tuft (30%), and increased collagen deposition in the cortex and medulla (by 175% and 700%, respectively). In programmed rats the expression of (Na(+)+K(+))ATPase in proximal tubules increased by 40%, but its activity was doubled owing to a threefold increase in affinity for K(+). Programming doubled the ouabain-insensitive Na(+)-ATPase activity with loss of its physiological response to Ang II, increased the expression of AT(1) and decreased the expression of AT(2) receptors), and caused a pronounced inhibition (90%) of protein kinase C activity with decrease in the expression of the α (24%) and ε (13%) isoforms. Activity and expression of cyclic AMP-dependent protein kinase decreased in the same proportion as the AT(2) receptors (30%). In vivo studies at 60 days revealed an increased glomerular filtration rate (GFR) (70%), increased Na(+) excretion (80%) and intense proteinuria (increase of 400% in protein excretion). Programmed rats, which had normal arterial pressure at 60 days, became hypertensive by 150 days. CONCLUSIONS/SIGNIFICANCE: Maternal protein restriction during lactation results in alterations in GFR, renal Na(+) handling and in components of the Ang II-linked regulatory pathway of renal Na(+) reabsorption. At the molecular level, they provide a framework for understanding how metabolic programming of renal mechanisms contributes to the onset of hypertension in adulthood
- …