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Abstract 26 

In this work sweet cherries coming from two Italian regions, Apulia and Emilia Romagna, were 27 

analyzed using Electronic Nose (EN) and Isotope Ratio Mass Spectrometry (IRMS) aiming at 28 

distinguishing them according to their geographic origin. The data were elaborated by statistical 29 

techniques, examining the EN and IRMS datasets both separately and in combination. Preliminary 30 

exploratory overviews were performed and then Linear Discriminant Analyses (LDA) were 31 

implemented for the classification aims. Regarding EN, different approaches for variable selection 32 

were tested highlighting the most suitable strategies. The LDA classification results were expressed 33 

in terms of recognition and prediction abilities and it was found that both EN and IRMS gave 34 

interesting classification performances, even if IRMS showed a better cross-validated prediction 35 

ability (91.0%); the EN-IRMS combination lead to slightly better results (92.3%). In order to 36 

validate the final results, the models were tested employing an external set of samples with very 37 

satisfying output.    38 

 39 

Keywords: Electronic Nose; Isotope Ratio Mass Spectrometry; Sweet cherry; Geographic origin; 40 

Chemometrics  41 
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1. Introduction 51 

The fruits of the sweet cherry trees belonging to Prunus avium L. species are used for fresh 52 

consumption, and for the production of marmalades, juices, jams, jelly fruits, and also alcoholic 53 

beverages. Sweet cherries are widely appreciated for their taste and their nutritional qualities, that 54 

are a consequence of their chemical profiles. In particular, they show a higher simple sugars content 55 

if compared to sour cherries, with glucose and fructose as main responsible for their sweetness; they 56 

present a considerable amount of hydrosoluble (C, B) and liposoluble (A, E and K) vitamins, 57 

carotenoids (such as -carotene, lutein and zeaxantine), minerals (calcium, magnesium, 58 

phosphorous and potassium), and volatile compounds, such as esters, alcohols, aldehydes, ketones, 59 

and terpenoid compounds (Ferretti, Bacchetti, Belleggia, & Neri, 2010; Li, Kang, Hu, Li, & Shen, 60 

2008; Pérez-Sánchez, Gómez-Sánchez, & Morales-Corts, 2010). In addition, natural healthy 61 

antioxidant substances like antocyanins and polyphenols are present in significant amounts (Liu et 62 

al., 2011). 63 

The main producers of sweet cherries in the world are represented by Turkey, United States, Iran, 64 

Italy, France, Spain and Russia (Doymaz & Ismail, 2011; Pérez-Sánchez et al., 2010), and regarding 65 

Italian production, it takes place mainly in the regions of Apulia, Campania, Veneto and Emilia 66 

Romagna. The varieties principally cultivated in Italy are Bigarreau, Black, Anella, Giorgia and 67 

Ferrovia, and some of them are cultivated mainly in specific localities, so showing peculiar traits, 68 

that confer them a remarkable quality value, leading local producers to act with the purpose to 69 

obtain European marks, such as “protected designation of origin” (PDO), “protected geographical 70 

indication” (PGI) and “traditional specialty guaranteed” (TSG), that, in general, help to protect and 71 

promote the brand names of Europe’s traditional agricultural produce and foods. 72 

Therefore, it is clear there is economic basis to develop analytical methods able to certify the 73 

declared geographical origin of food products in order to protect consumers and honest producers 74 

from frauds and unfair competition, respectively; consequently, during the past years, several 75 
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techniques have been proposed for such purpose on various food matrices with various results 76 

(Cajka, Riddellova, Klimankova, Cerna, Pudil, & Hajslova, 2010; Camin, Perini, Bontempo, & 77 

Giongo, 2009; Longobardi et al., 2012a; Longobardi et al., 2012b; Longobardi et al., 2013; Torri, 78 

Sinelli, & Limbo, 2010).  79 

Among the innovative analytical techniques, the Electronic Nose (EN) has been proven highly 80 

useful in studies on food  matrices (Benedetti, Buratti, Spinardi, Mannino, & Mignani, 2008; 81 

Pacioni, Cerretani, Procida, & Cichelli, 2014; Russo, di Sanzo, Cefaly, Carabetta, Serra, & Fuda, 82 

2013). Briefly, ENs are devices that mimic the sense of smell of mammalians, on the basis of 83 

different technologies, to detect volatile analytes in complex matrices (Peris & Escuder-Gilabert, 84 

2009). 85 

The application of the EN in the discrimination of the geographic origin or of the variety of food 86 

matrices is well documented, indicating a great potential of this technique in these fields (Cajka et 87 

al., 2010; Cynkar, Dambergs, Smith, & Cozzolino, 2010; de las Nieves López de Lerma, 88 

Bellincontro, García-Martínez, Mencarelli, & Moreno, 2013).  89 

Another innovative technique for the analysis of food matrices is the Isotopic Ratio Mass 90 

Spectrometry (IRMS). Such technique investigates the ratios of the stable isotopes present in a 91 

sample, i.e. those isotopes that do not decay through radioactive processes over time.  92 

In the field of authenticity of food, and, in particular, the discrimination of the geographical origin 93 

of food matrices, the IRMS has a great potential as demonstrated by the numerous papers (Kelly, 94 

Heaton, & Hoogewerff, 2005; Perini & Camin, 2013; Longobardi, Casiello, Sacco, Tedone, & 95 

Sacco, 2011; Rossmann, Reniero, Moussa, Schmidt, Versini, & Merle, 1999; Rummel, Hoelzl, 96 

Horn, Rossmann, & Schlicht, 2010; Sacco et al., 2009).   97 

However, concerning the use of EN and IRMS on cherry samples, at our knowledge, the examples 98 

in the literature are few and mainly deal with the evaluation of fruit ripeness (Benedetti, Spinardi, 99 

Mignani, & Buratti, 2010). Therefore, in this work, sweet cherry samples coming from two 100 
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different Italian regions devoted to the cherry production, Apulia and Emilia Romagna, were 101 

analyzed by means of the above mentioned innovative instrumental techniques, i.e. EN and IRMS, 102 

with the purpose to discriminate the samples on the basis of their geographic origin.  103 

 104 

 105 

2. Materials and methods 106 

 107 

2.1 Sample collection 108 

A total of 112 cherry samples from two different Italian regions, i.e. 56 Emilian samples and 56 109 

Apulian samples, belonging to three different varieties, i.e. “Bigarreau”, “Giorgia” and “Ferrovia” 110 

were collected. Cherries were harvested during the 2010 crop season,  between the 3
rd

 decade of 111 

May and the 3
rd

 decade of June. Apulian samples came from the areal close to the south-east of Bari 112 

whereas Emilian ones from the area between the provinces of Modena and Bologna. The fruits were 113 

harvested in a state of consumption maturity, cooled in a few hours, and transported to laboratory 114 

assuring the maintenance of the cold chain. Subsequently, the cherries were washed with tap water, 115 

carefully wiped with laboratory paper, and, for IRMS analyses, freeze-dried (see below) while for 116 

EN analyses, samples were introduced in polyethylene bags, kept frozen and stored at -70°C. 117 

 118 

2.2 EN apparatus and analyses 119 

For EN measurements, cherry samples were thawed at +4° C for 2 h, cut in small pieces, and then 120 

an aliquot of 2 g was placed into a 10 mL vial hermetically sealed with a cap having a Teflon 121 

septum and placed in a thermostatic bath at 40°C for 90 min in order to establish equilibrium 122 

between headspace and sample. The cherry headspace was pumped in an Electronic Nose System 123 

PEN3 (Airsense Analytics, Schwerin, Germany), equipped with an array of 10 metal oxide 124 

semiconductor (MOS) sensors, at a flow rate of 400 mL min
−1

,  and the sensor responses were 125 
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sampled every 1 s for 120 s. After each sample analysis, the system was purged for 200 s with 126 

filtered air prior to the next sample injection to allow re-establishment of the instrument baseline. 127 

Each sample was analyzed twice and the average of the results was used for subsequent statistical 128 

analysis. 129 

 130 

2.3 IRMS apparatus and analyses 131 

For stable isotope ratio analysis, cherry fruits were cut in half, pitted, frozen at -80°C and then 132 

freeze-dried for 48h using a Heto Lyolab 3000 freeze dryer (Heto-Holten A/S, Allerød, Denmark). 133 

Freeze-dried cherries were powered using a commercial blender and stored in sealed containers 134 

under vacuum until analysis.  135 

For 
13

C/
12

C analysis about 0.3 mg of freeze-dried sample were weighed into tin capsules and 136 

directly analyzed, whereas for 
18

O/
16

O and 
2
H/

1
H analysis about 1.5 mg of sample were firstly 137 

weighed into silver capsules and then stored in a desiccator above P2O5 for at least 72 h before 138 

analysis. 139 

The analyses were performed using an isotopic ratio mass spectrometer (IRMS, Finnigan Delta V 140 

Advantage, Thermo Fisher Scientific, Bremen, Germany) coupled with an elemental analyser (EA, 141 

FlashEA 1112 HT, Thermo Fisher Scientific, Bremen, Germany). The EA was equipped with a 142 

combustion reactor (held at 1020°C) for 
13

C/
12

C determination and a pyrolysis reactor (a high-143 

temperature conversion elemental analyser, held at 1450°C) for 
18

O/
16

O and 
2
H/

1
H ratios. Samples 144 

were introduced into the pyrolysis/combustion column via the autosampler (MAS 200R, Thermo 145 

Fisher Scientific, Bremen, Germany), equipped with a suitable cover, where dry conditions were 146 

ensured by flushing nitrogen continuously over the samples. 147 

The EA was interfaced with the IRMS through a dilutor (Finnigan Conflo III, Thermo Fisher 148 

Scientific, Bremen, Germany) dosing the samples and reference gases. To separate the gases 149 
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produced (CO2 during the combustion and CO or H2 during the pyrolysis) the elemental analyser 150 

was supplied with two Porapak QS gas chromatography columns. 151 

The isotopic values were expressed using the conventional δ notation in parts per thousand (‰) vs. 152 

V-SMOW (Vienna-Standard Mean Ocean Water) for oxygen and hydrogen, PDB (Pee Dee 153 

Belemnite) for carbon, according to the following formula: 154 

[(Rsample − Rstandard) / Rstandard] × 1000 155 

where R represents the ratio between the heavy and light isotopes, in the sample and standard, 156 

respectively. Each sample was analysed twice and the isotopic value was reported as mean of the 157 

two determinations. The values were calculated against reference gases (i.e. CO2, CO and H2) 158 

previously calibrated against International Standards supplied by IAEA (International Atomic 159 

Energy Agency, Vienna, Austria): USGS 40 for 
13

C/
12

C, IAEA-CH-7 for 
2
H/

1
H, and IAEA-601 for 160 

18
O/

16
O. To check the accuracy, working in-house standards were analysed in each run. In 161 

particular, a commercial casein and benzoic acid (Carlo Erba Reagents, Milan, Italy) was used for 162 

13
C/

12
C and 

18
O/

16
O, respectively. For 

2
H/

1
H, supposing the possible exchange of hydrogen with 163 

water and/or ambient air moisture, the values were corrected against an Inter-laboratory 164 

Comparison Material (ICM) – casein reference material according to the “comparative equilibration 165 

technique” (Wassenaar & Hobson, 2003). The precision of measurement, expressed as one standard 166 

deviation and obtained measuring a cherry sample 10 times, was ± 3‰ for δD, ± 0.3‰ and ± 0.2‰ 167 

for δ
18

O and δ
13

C, respectively. 168 

 169 

2.4 Chemometrics 170 

For the statistical analyses, dataset was subdivided into two subsets by exploiting the Kennard and 171 

Stone Duplex design (Casale et al., 2012): a modeling set and an external set, containing 78 (39 172 

Emilia Romagna and 39 Apulian samples, i.e. about 70% of total samples), and 34 (17 Emilia 173 

Romagna and 17 Apulian samples, i.e. about 30% of total samples) cherry samples, respectively. 174 
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Modeling subset were processed by univariate statistics (t-test) and the following multivariate 175 

techniques: unsupervised (PCA), for an exploratory overview, and supervised discriminant 176 

techniques (LDA) in order to build statistical models able to discriminate cherries according to their 177 

geographic origin. In the model-building step, each supervised pattern recognition model was 178 

evaluated in terms of non-error classification rate, both on the whole modeling set (recognition 179 

ability), and on the test set obtained by k-fold cross-validation (CV prediction ability) with a k value 180 

equal to 5. Finally, the validation and comparison of the models were executed calculating the 181 

prediction abilities obtained on the external set. Statistic and chemometric data analyses were 182 

performed by using Statistica version 8.0 (StatSoft Italia srl, Padova, Italy) and V-Parvus release 183 

2010 (http://www.parvus.unige.it, Genova, Italy). 184 

 185 

 186 

3. Results and discussion  187 

 188 

3.1 EN results 189 

The whole EN data matrix was constituted by 78 objects (cherry samples) and 1200 variables (120 190 

points for each of the10 sensors). Using all the matrix elements, even if assures bringing all the 191 

available information, could require further data treatments to avoid statistical and/or computational 192 

problems. Based on these considerations, researchers chose different strategies to sample the sensor 193 

signal points in their works, i.e. using one point per sensor or a higher number of points, at selected 194 

sampling times (Hai & Wang 2006; Hernández-Gómez, Wang, Hu, & García-Pereira, 2008). In this 195 

work, three different ways were tested and then the obtained results were compared and discussed. 196 

In particular, the variable employment strategies (VESs) tested herein were: 197 

VES1. For each curve only a single point (sensor response at 110 s) was considered, i.e. almost at 198 

the end of the sensor curve, where all the signals could be considered stationary. 199 
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VES2. For each curve, variables were selected considering one point every 10 s.    200 

VES3. The whole curve was employed, i.e. no variable choice was applied, so that 120 points were 201 

used per each sensor response.    202 

Therefore, the three VESs were at an increasing level of complexity, consequently producing data 203 

matrices strongly different in dimensions. Each VES has its own advantages and drawbacks: VES1 204 

leads to a data matrix that can be easily used in the following statistical treatments  even if the great 205 

part of the curve information is lost, and it is not possible to know a priori if such lost information 206 

would be important for the geographic classification aims; VES3, at opposite, takes into account all 207 

the information contained in the sensor curve, nothing being left out, and it does not force the 208 

operator to decide a particular variable selection strategy, but it generates a huge data matrix 209 

containing highly correlated variables, and it requires further treatments for the subsequent 210 

applications used herein. Finally, VES2 represents a compromise between VES1 and VES3, since it 211 

leads to a data matrix that brings more information than VES1, even not containing the huge 212 

amount of highly correlated variables of VES3.  213 

 214 

3.1.1 Exploratory overview by PCA 215 

In order to get a general overview of the data distributions, the data matrix obtained according to 216 

VES1, 2 and 3 were subjected to PCA and the minimum number of PCs explaining more than 95% 217 

of cumulative variance, were five, six and seven for VES1, VES2, and VES3, respectively. 218 

By plotting the scores of the samples in the sub-space PC1 vs. PC2, no grouping of objects was 219 

observed on the basis of the geographical origin, for all the VES methods (graphs not shown). 220 

Comparing the PC Fisher weights (FW), i.e. a measure of the between-class variance/within-class 221 

variance ratio (Harper et al., 1977), it was evidenced that the PCs having better ability to 222 

discriminate origins (higher FWs) were not the ones explaining most of the observed variance.  223 
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However, it has to be noticed that all FW values were considerably lower than 1, evidencing that no 224 

single PC was sufficiently suitable for classification aims, as showed also in Fig. 1a, b and c, where 225 

2D graphs of the PCs, with the highest FWs, showed only partial grouping of objects on the basis of 226 

the geographic origin for each VES. This information seemed to indicate that a multivariate 227 

approach was advisable. Finally, the VES2 and 3 were found to lead to PC variables with higher 228 

FWs than for VES1, indicating that it could be better to use more information from the sensor 229 

curves than only one point. 230 

 231 

3.1.2 Linear Discriminant Analysis 232 

LDA was applied on all the three VES matrices listed above. For applying discriminant analysis, it 233 

is necessary that the number of variables is not too large with respect to the number of objects, 234 

mainly due to the overloading of the computations required to calculate the Mahalanobis distances, 235 

and also due to the possibility to incur overfitting problems. Therefore, when the variables/objects 236 

ratio is too high, a variable reduction must be performed. With regard to the overfit risks, a general 237 

rule states that the number of variables should not exceed (n−g)/3, where n is the number of objects 238 

and g is the number of categories (Berrueta, Alonso-Salces, & Héberger, 2007; Defernez & 239 

Kemsley, 1997).  240 

Moreover, it is important to highlight that if variable selection is carried out by means of supervised 241 

methods, overoptimistic results could be still obtained, and consequently model results should be 242 

accepted only after having performed a cross- and/or external validation of the model. 243 

Considering the data matrices under study, the above mentioned  requisite was directly satisfied by 244 

VES1 modeling set, whilst variable selection routines were found to be necessary for VES2 and 3 245 

before performing LDA. Two different strategies for selecting the variables were tested, taking into 246 

account not to exceed a critical number of 25, i.e. (n−g)/3. The first strategy was to choose a set of 247 

25 variables by applying the Parvus SELECT feature (Casale, Casolino, Oliveri, & Forina, 2010): 248 
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this technique, is a variable selection that, based on a stepwise decorrelation of the variables, 249 

generates a set of decorrelated variables ordered by their classification FWs (according to a 250 

response variable, i.e. the geographic origin in this case). SELECT searches, at each step, for the 251 

variable with the largest classification weight, that is selected and decorrelated from the other ones. 252 

In the second strategy, a forward stepwise LDA was performed onto VES2 and 3; the forward 253 

stepwise statistics, with F-to-enter equal to 1.0 and F-to-remove equal to 0.5, selected respectively 254 

22 and 4 variables to be used in the relevant final models. All the recognition and CV prediction 255 

abilities of the final obtained models are reported in Table 1 for comments.  256 

As it can be easily observed, VES2 and 3 lead to better classification performances if compared to 257 

VES1 LDA results, both considering the recognition and the CV prediction abilities. This could be 258 

ascribable to the importance of using more information from the sensor curve rather than the only 259 

contained just in a single point, and this seems to be in accordance with the considerations coming 260 

from the previously commented PCA analyses.  261 

Moreover, if VES2 and 3 LDA prediction results are compared, it can be noticed that no particular 262 

advantage seems to occur by considering all the sensor curve points; rather, considering the 263 

stepwise LDA strategy, a slight decrease of the classification performances was obtained going 264 

from VES2 to VES3 model; in other words, the results evidenced that LDA should be applied on a 265 

data matrix that brings sufficient amount of information of the EN sensor curves, without 266 

overloading the variable selection algorithms with an excessive amount of variables to compute. 267 

By computing the Factor Structure Coefficients (FSCs) that express the pooled within-class 268 

(groups) correlations of the original EN variables with the discriminant function, it was possible to 269 

partly interpret the meaning of the discriminant function getting at the same time information about 270 

the most discriminating original EN variables. 271 

In particular, in all the VES methods, a remarkable importance of the sensor 7 variables was 272 

highlighted (highest FSCs); more in detail, by considering VES2 and 3, the first part of the sensor 7 273 
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curve (comprised in the range 10-20 s) was found to be interestingly important for the 274 

discrimination of the geographical origin of samples, together with the final part of the same sensor 275 

curve.  As indicated by the EN instrument manufacturer, the sensor 7, coded as W1W, is 276 

particularly sensitive to terpene molecules, that are important volatile flavor compounds in sweet 277 

cherries as reported in literature (Li et al., 2008; Girard & Kopp, 1998). This suggests that terpenes 278 

could be useful molecules for the discrimination of the cherries on the basis of their geographic 279 

origins, although, due to the lack of specificity of the EN response, it cannot be known with 280 

certainty if other classes of compounds have contributed to the good model performances obtained 281 

herein.  282 

 283 

3.2 IRMS results 284 

As showed in Fig. 1d, representing the cherry samples in the space defined by the three IRMS 285 

variables (i.e. δ
13

C, δ
18

O, and δD), a partial grouping of cherry samples coming from the two 286 

different geographical origins was observed. In order to quantitatively find out which of the three 287 

original IRMS variables were more discriminating on the basis of cherry geographic origins, a 288 

univariate t-test was carried out highlighting statistically significant  differences (p <0.05) only in 289 

the mean values of δ
18

O and δD. In particular, as reported in Table 2, δ
18

O and δD showed mean 290 

values that increased from north (Emilia) to south (Apulia), i.e. a δ
18

O mean value of 33.2 ‰ for 291 

Emilia and of 35.4 ‰ for Apulia, and a δD mean value of -38.5 ‰ and of -30.7 ‰ for Emilia and 292 

Apulia, respectively. Therefore, all results reported above confirm that the δ
18

O and δD are good 293 

parameters to differentiate  geographic origins of foodstuffs. Indeed, stable carbon isotope ratios of 294 

plants, are primarily related to the photosynthetic pathway used by a plant even if δ
13

C in foodstuffs 295 

exhibits some geographical dependence linked to water stress and humidity during cultivation 296 

although these differences are often very small in comparison to other isotopes (Hurley, West, & 297 

Ehleringer, 2010; Longobardi et al., 2011). On the country, hydrogen and oxygen stable isotopes of 298 
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plant materials are strongly linked to the climatic conditions (relative humidity, temperature, 299 

amount of precipitation) and geographical characteristics (distance from the sea or other 300 

evaporation source, altitude, latitude) of the area where the plants grow (Bontempo, Camin, 301 

Larcher, Nicolini, Perini, & Rossmann, 2008; Hermann & Voerkelius, 2008; Iacumin, Bernini, & 302 

Boschetti, 2009). In particular, the δ
18

O of the plant products reflects the isotopic composition of 303 

groundwater and average precipitation in the region (mainly related to geographic coordinates i.e. 304 

latitude, distance from the sea and altitude) and the extent of evapotranspiration (mainly influenced 305 

by humidity and temperature) (Rossmann et al., 1999). Similarly, the hydrogen present in plant 306 

material originates from the water taken up by the roots (Ziegler, Osmind, Stichler, & Trimborn, 307 

1976) and the subsequent evapotranspiration process of water through the leaf stomata enriches the 308 

remaining water in deuterium.  309 

Subsequently, to assess discrimination efficiency for cherry origin, LDA was performed by using 310 

all the isotopic ratio values obtaining recognition and CV prediction abilities of 94.9% and 94.1%, 311 

respectively (Table 1). These excellent performance slightly decreased when LDA model was built 312 

considering only δ
18

O and δD, in particular the recognition and CV prediction abilities resulted to 313 

be 92.3 and 91.2%, respectively. Therefore, unlike what has been shown by univariate analysis, 314 

δ
13

C, used in multivariate combination with other isotopic indicators, results to be a useful 315 

parameter for tracing cultivation areas of cherry samples, demonstrating the powerful of a multiple  316 

stable isotopes composition analysis in geographic discrimination aims of food (Kelly et al., 2005; 317 

Zhao, Zhang, Chen, Chen, Yang, & Ye, 2014).  318 

 319 

3.3 External validation of the classification models 320 

Among the LDA models here obtained, the most promising ones in terms of classification 321 

performances were subjected to an external validation procedure to verify their real reliabilities 322 

(Table1). 323 
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In particular, regarding the EN technique, the VES2 and VES3 recognition and CV results were 324 

found to be remarkable, while in the case of IRMS the attention was focused on the approach 325 

considering all the isotopic variables. As results, with regard to EN, it was found that the VES2 326 

strategy produced the same prediction abilities (82.4%) independently on the variable selection 327 

method (SELECT or forward stepwise statistics) adopted, indicating a considerable stability of both 328 

models. At contrary, the external validation of the VES3 based LDA models evidenced that the 329 

prediction ability was remarkably dependent on the variable selection routine, since while the 330 

forward stepwise LDA gave a prediction ability comparable to the ones obtained in VES2 approach, 331 

the SELECT based LDA lead to a considerably worse prediction performance (76.5%).  332 

These results showed that, the higher the number of variables and the correlation among them (as in 333 

VES3 with respect to VES2 matrix), the more the LDA depends on the variable selection technique 334 

adopted. Moreover, clearly these findings highlight how can be important to apply an external 335 

validation procedure to the classification models, especially when obtained after supervised variable 336 

selection routines on huge data matrices as the one obtained herein. 337 

Regarding the IRMS, the particularly good classification and CV performances, were confirmed by 338 

the external prediction ability, equal to 94.1%, evidencing the reliability of the IRMS LDA model, 339 

that was found to classify incorrectly only one external sample per each class. 340 

Finally, in order to find if the combination of the two instrumental techniques could produce even 341 

more interesting results, here the EN and IRMS variables were considered together, and among all 342 

the possibilities tested, the one that gave the best results was to consider the EN variables coming 343 

from VES2 design together with δ
13

C, δ
18

O, and δD variables coming from IRMS, and to apply a 344 

forward stepwise LDA. The forward stepwise statistics selected 9 variables: δ
13

C, δ
18

O, δD, S5p79, 345 

S7p9, S7p19, S7p99, S7p109, S9p69 that allowed obtaining recognition and CV prediction abilities 346 

equal to 96.2 and 92.3%, respectively. The obtained model was then subjected to the external 347 

validation procedure, showing a prediction ability of 94.1%. Therefore, considering this slight 348 
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improvement of the model performances, it can be asserted that the EN-IRMS synergistic approach 349 

is not a necessary step to obtain reliable and acceptable results, obtainable by the single techniques 350 

here tested.  351 

 352 

 353 

4. Conclusions 354 

In this paper, EN and/or IRMS data were used, in combination with LDA, to discriminate Italian 355 

sweet cherries coming from two different geographic origins.  356 

Regarding EN analyses, the results demonstrated that the selection of the variables to be considered 357 

in the LDA building was decisive to obtain good and stable model performances; in particular, the 358 

best prediction abilities ranged from 85.9% to 89.7% and from 82.4% to 85.3% for an internal (CV) 359 

and an external validation, respectively. Better results were obtained with IRMS especially by using 360 

all the isotopic ratios gaining a CV prediction ability of 91.0% and an external prediction equal to 361 

94.1%. No significant improvement was obtained combining isotopic and electronic nose data. 362 

In conclusion, it can be asserted that both techniques represent valid tools for geographic 363 

discrimination of Italian cherries but some considerations should be taken into account. On one 364 

hand, the IRMS is more accurate and allows obtaining stable databases overtime although it 365 

requires more expensive equipment and skilled operators. On the other hand, the EN even giving 366 

less accurate prediction results depending on the poor sensor selectivity, and even requiring some 367 

approaches for compensating sensors drift, shows important advantages in terms of portability, 368 

price, and ease of use; therefore, it can be easily adopted for industrial routine controls. 369 

 370 

 371 

 372 

 373 
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Figure captions  399 

 400 

Figure 1. PCA scatter plots for cherry samples data obtained by EN with VES1 (a), VES2 (b) and 401 

VES3 (c); for each panel the two PCs with the highest FWs are reported as axes. Three dimensional 402 

scatter plots (d) for cherry samples data obtained by IRMS, considering the isotopic variables δ
13

C, 403 

δ
18

O, and δ Apulia (+). 404 
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Table 1. LDA recognition and prediction abilities for the models classifying Italian sweet cherries according to their 

geographical origin (Apulia and Emilia Romagna), on the basis of the EN, IRMS and the relevant combined data. 

Regarding EN, the performances obtained considering different variable employment strategies are reported, i.e. VES1, 

VES2, and VES3, using 1, 10, and 120 points per sensor curve, respectively.  

 

 LDA performances (%) 

Dataset EN VES1 EN VES2 EN VES3 IRMS 
EN VES2+ 

IRMS 

Variable selection 

procedure 

no variable 

reduction 

SELECT 

routine 

Stepwise 

statistics 

SELECT 

routine 

Stepwise 

statistics 

no variable 

reduction 

Stepwise 

statistics 

Recognition 

(modeling set) 
85.9 97.4 97.4 98.7 87.2 94.9 96.2 

CV prediction (k=5) 80.8 85.9 89.7 89.7 85.9 91.0 92.3 

External prediction 

(external set) 
82.4 82.4 82.4 76.5 85.3 94.1 94.1 
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Table 2. Means and standard deviations (SD) of isotopic ratios obtained for the Italian cherries. Results for 

geographical origin of t-test are reported: groups of one row with different letters are statistically different (p <0.05).
 

 
         

 
Italian region 

 
        Emilia Romagna  Apulia  

Isotopic ratio mean  SD mean  SD 

δ
13

C -26.5
a
 0.9 -26.4

a
 0.8 

δ
18

O  33.2
a
 1.2  35.4

b
 0.9 

δD -38.5
a
 4.8 -30.7

b
 5.5 
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