8 research outputs found

    Silver Nanoparticles Decorated with PEGylated Porphyrins as Potential Theranostic and Sensing Agents

    No full text
    Silver nanoparticles (AgNPs) stand out over other metal nanoparticles thanks to their peculiar bactericidal and spectroscopic properties. Tunability of the AgNPs chemical–physical properties could be provided through their organic covalent coating. On the other hand, PEGylated porphyrin derivatives are versatile heteromacrocycles investigated for uses in the biomedical field as cytotoxic and tracking agents, but also as sensors. In this work, an easy multi-step approach was employed to produce coated silver nanoparticles. Specifically, the AgNPs were functionalized with 5,10,15-[p-(ω-methoxy-polyethyleneoxy)phenyl]-20-(p-hydroxyphenyl)-porphyrin (P(PEG350)3), using chloropropanethiol as a coupling agent. The P(PEG350)3 was structurally characterized through MALDI-TOF mass spectrometry, NMR spectroscopy and thermal analyses. The functionalization of AgNPs was monitored step-by-step employing UV-Vis spectroscopy, dynamic light scattering and thermogravimetric techniques. HRTEM and STEM measurements were used to investigate the morphology and the composition of the resulting nanostructured system (AgNP@P(PEG350)3), observing a long-range alignment of the outer porphyrin layer. The AgNP@P(PEG350)3 combines the features of the P(PEG350)3 with those of AgNPs, producing a potential multifunctional theranostic tool. The nanosystem revealed itself suitable as a removable pH sensor in aqueous solutions and potentially feasible for biological environment applications

    Photosensitized Thermoplastic Nano-Photocatalysts Active in the Visible Light Range for Potential Applications Inside Extraterrestrial Facilities

    No full text
    Among different depollution methods, photocatalysis activated by solar light is promising for terrestrial outdoor applications. However, its use in underground structures and/or microgravity environments (e.g., extraterrestrial structures) is forbidden. In these cases, there are issues related to the energy emitted from the indoor lighting system because it is not high enough to promote the photocatalytic mechanism. Moreover, microgravity does not allow the recovery of the photocatalytic slurry from the depolluted solution. In this work, the synthesis of a filmable nanocomposite based on semiconductor nanoparticles supported by photosensitized copolyacrylates was performed through a bulk in situ radical copolymerization involving a photosensitizer macromonomer. The macromonomer and the nanocomposites were characterized through UV-Vis, fluorescence and NMR spectroscopies, gel permeation chromatography and thermogravimetric analysis. The photocatalytic activity of the sensitized nanocomposites was studied through photodegradation tests of common dyes and recalcitrant xenobiotic pollutants, employing UV-Vis and visible range (λ > 390 nm) light radiations. The sensitized nanocomposite photocatalytic performances increased about two times that of the unsensitized nanocomposite and that of visible range light radiation alone (>390 nm). The experimental data have shown that these new systems, applied as thin films, have the potential for use in indoor deep underground and extraterrestrial structures

    TiO2-Based Nanocomposites Thin Film Having Boosted Photocatalytic Activity for Xenobiotics Water Pollution Remediation

    No full text
    Photocatalytic remediation represents a potential sustainable solution to the abatement of xenobiotic pollutants released within the water environment. Aeroxide® P25 titanium dioxide nanoparticles (TiO2 NPs) are well-known as one of the most efficient photocatalysts in several applications, and have also been investigated in water remediation as suspended powder. Recently, their application in the form of thin films has been revealed as a potential alternative to avoid time-consuming filtration processes. Polymers represent suitable substrates to immobilize TiO2 NPs, allowing further production of thin films that can be exploited as a photoactive coating for environmental remediation. Nevertheless, the methods adopted to immobilize TiO2 NPs on polymer matrix involve time-consuming procedures and the use of several reactants. Here, titanium dioxide-based nanocomposites (NCx) were obtained through a new approach based on Methyl Methacrylate in situ bulk polymerization and were compared with a blended mixture (BL). Their morphology and chemical–physical properties were investigated through Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), UV–Vis, and Raman spectroscopies. It was revealed that the in situ approach deeply influences the chemical–physical interactions between the polymer matrix and TiO2 NPs. Photocatalytic experiments revealed the boosted photodegradation activity of NCx thin films, induced by the in situ approach. The photodegradation of paraquat and acetaminophen was also ascertained

    Polymer-Based Graphene Derivatives and Microwave-Assisted Silver Nanoparticles Decoration as a Potential Antibacterial Agent

    No full text
    Nanocomposites obtained by the decoration of graphene-based materials with silver nanoparticles (AgNPs) have received increasing attention owing to their antimicrobial activity. However, the complex synthetic methods for their preparation have limited practical applications. This study aims to synthesize novel NanoHybrid Systems based on graphene, polymer, and AgNPs (namely, NanoHy-GPS) through an easy microwave irradiation approach free of reductants and surfactants. The polymer plays a crucial role, as it assures the coating layer/substrate compatibility making the platform easily adaptable for a specific substrate. AgNPs’ loading (from 5% to 87%) can be tuned by the amount of Silver salt used during the microwave-assisted reaction, obtaining spherical AgNPs with average sizes of 5–12 nm homogeneously distributed on a polymer-graphene nanosystem. Interestingly, microwave irradiation partially restored the graphene sp2 network without damage of ester bonds. The structure, morphology, and chemical composition of NanoHy-GPS and its subunits were characterized by means of UV-vis spectroscopy, thermal analysis, differential light scattering (DLS), Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray analysis (EDX), Atomic Force Microscopy (AFM), and High-Resolution Transmission Electron Microscopy (HRTEM) techniques. A preliminary qualitative empirical assay against the typical bacterial load on common hand-contacted surfaces has been performed to assess the antibacterial properties of NanoHy-GPS, evidencing a significative reduction of bacterial colonies spreading

    Solar light mediated anthracene abatement in aerated aqueous media using a thermoplastic nanocomposite photocatalyst

    No full text
    Polycyclic aromatic hydrocarbons (PAHs) are the most widespread xenobiotic pollutants in water and their abatement usually involves expensive and energy-consuming treatments. In this work, anthracene (AN) was selected as the recalcitrant model of PAHs and its solar light-stimulated heterogeneous photocatalytic abatement in aerated aqueous media was investigated using a new TiO derived thermoplastic nanocomposite in thin film form. The results were also compared with the benchmark TiO photocatalyst in slurry form. Finally, the possible contribution of reactive intermediates such as hydroxyl radical, AN radical cation and singlet oxygen, was investigated by using a hydroxyl radical trap and laser flash photolysis. Based on the obtained results, a feasible mechanism for AN photodegradation, which involves hydroxyl radical as the key oxidizing species is proposed.This research was funded by the University of Catania (Piano di incentivi per la ricerca di Ateneo, PIACERI–Linea 2)

    Porphyrin-based supramolecular flags in the thermal gradients’ wind: What breaks the symmetry, how and why

    Get PDF
    The Spontaneous Symmetry Breaking (SSB) phenomenon is a natural event in which a system changes its symmetric state, apparently reasonless, in an asymmetrical one. Nevertheless, this occurrence could be hiding unknown inductive forces. An intriguing investigation pathway uses supramolecular aggregates of suitable achiral porphyrins, useful to mimic the natural light-harvesting systems (as chlorophyll). Using as SSB probe supramolecular aggregates of 5,10,15,20-tetrakis[p(ω-methoxypolyethyleneoxy)phenyl]porphyrin (StarP), a non-ionic achiral PEGylated porphyrin, we explore here its interaction with weak asymmetric thermal gradients fields. The cross-correlation of the experimental data (circular dichroism, confocal microscopy, atomic force microscopy, and cryo-transmission electron microscopy) revealed that the used building blocks aggregate sponta-neously, organizing in flag-like structures whose thermally-induced circular dichroism depends on their features. Finally, thermal gradient-induced enantioselectivity of the supramolecular flag-like aggregates has been shown and linked to their size-dependence mesoscopic deformation, which could be visualized as waving flags in the wind

    Crosstalk between ILC3s and Microbiota: Implications for Colon Cancer Development and Treatment with Immune Check Point Inhibitors

    No full text
    Type 3 innate lymphoid cells (ILC3s) are primarily tissue-resident cells strategically localized at the intestinal barrier that exhibit the fast-acting responsiveness of classic innate immune cells. Populations of these lymphocytes depend on the transcription factor RAR-related orphan receptor and play a key role in maintaining intestinal homeostasis, keeping host-microbial mutualism in check. Current evidence has indicated a bidirectional relationship between microbiota and ILC3s. While ILC3 function and maintenance in the gut are influenced by commensal microbiota, ILC3s themselves can control immune responses to intestinal microbiota by providing host defense against extracellular bacteria, helping to maintain a diverse microbiota and inducing immune tolerance for commensal bacteria. Thus, ILC3s have been linked to host-microbiota interactions and the loss of their normal activity promotes dysbiosis, chronic inflammation and colon cancer. Furthermore, recent evidence has suggested that a healthy dialog between ILC3s and gut microbes is necessary to support antitumor immunity and response to immune checkpoint inhibitor (ICI) therapy. In this review, we summarize the functional interactions occurring between microbiota and ILC3s in homeostasis, providing an overview of the molecular mechanisms orchestrating these interactions. We focus on how alterations in this interplay promote gut inflammation, colorectal cancer and resistance to therapies with immune check point inhibitors
    corecore