16 research outputs found

    Wavelet-Based Analysis of Physical Activity and Sleep Movement Data from Wearable Sensors among Obese Adults

    Get PDF
    Decreased physical activity in obese individuals is associated with a prevalence of cardiovascular and metabolic disorders. Physicians usually recommend that obese individuals change their lifestyle, specifically changes in diet, exercise, and other physical activities for obesity management. Therefore, understanding physical activity and sleep behavior is an essential aspect of obesity management. With innovations in mobile and electronic health care technologies, wearable inertial sensors have been used extensively over the past decade for monitoring human activities. Despite significant progress with the wearable inertial sensing technology, there is a knowledge gap among researchers regarding how to analyze longitudinal multi-day inertial sensor data to explore activities of daily living (ADL) and sleep behavior. The purpose of this study was to explore new clinically relevant metrics using movement amplitude and frequency from longitudinal wearable sensor data in obese and non-obese young adults. We utilized wavelet analysis to determine movement frequencies on longitudinal multi-day wearable sensor data. In this study, we recruited 10 obese and 10 non-obese young subjects. We found that obese participants performed more low-frequency (0.1 Hz) movements and fewer movements of high frequency (1.1–1.4 Hz) compared to non-obese counterparts. Both obese and non-obese subjects were active during the 00:00–06:00 time interval. In addition, obesity affected sleep with significantly fewer transitions, and obese individuals showed low values of root mean square transition accelerations throughout the night. This study is critical for obesity management to prevent unhealthy weight gain by the recommendations of physical activity based on our results. Longitudinal multi-day monitoring using wearable sensors has great potential to be integrated into routine health care checkups to prevent obesity and promote physical activities

    Postural control in standing: role of vision and additional support

    No full text
    The purpose of the study was to investigate the availability of vision and additional support on anticipatory (APAs) and compensatory (CPAs) postural adjustments and their interaction. Eight healthy adults were exposed to external perturbations induced at the shoulder level while standing with and without holding onto a walker in full vision and while blindfolded. Electrical activity of the trunk and leg muscles and center of pressure (COPAP) displacements were recorded and quantified within the time intervals typical of APAs and CPAs. The results showed that with full vision, there was no difference in both APAs and CPAs in standing with and without holding onto a walker. With subjects holding onto a walker, CPAs in standing blindfolded were comparable to CPAs in full vision: this was seen in changes in the electrical activity of most of the muscles at the individual muscle, joint, and the muscle group levels as well as in COPAP displacements. The findings suggest that: (1) in conditions where vision is available, vision overrules simultaneously available proprioceptive information from the support, (2) while in conditions where vision is not available, proprioceptive information from the support or support itself could be substituted for vision. It is possible to suggest that using a non stabilizing support could be a valuable strategy to improve postural control when visual information is not available or compromised

    Comparison of 360° Turn Cycles among Individuals after Stroke and Healthy Older Adults

    No full text
    Stroke survivors are at high risk of falling during turning. The kinematics of performing a 360° turn have not been fully analyzed among individuals after stroke. Quantitative differences in the parameters of turning between healthy older adults and those after stroke could provide detailed information on turning ability among these groups. The purpose of the current study was to characterize differences between healthy older adults and adults after stroke in 360° turn kinematics. Fourteen individuals with chronic stroke (mean age: 69 ± 8.4 years) and 14 healthy older adults (mean age: 74 ± 8.7 years) performed three trials of 360° turning. Kinematics data were collected using 26 reflective markers at several body landmarks. This new method for quantifying turning revealed that stroke significantly affected the number of turn cycles, number of single support (SS) critical phases, and critical time. In some cases, falls among individuals with stroke may be related to the combination of impaired movement patterns and the complexity of tasks such as turning. Understanding turning kinematics can inform clinical interventions targeting improvements in turning ability and consequently, fall risk reduction in individuals after stroke

    The effect of decreased visual acuity on control of posture

    No full text
    Objectives: The goal of this study was to investigate the effect of visual acuity on the anticipatory (APAs) and compensatory (CPAs) components of postural control. Methods: Ten individuals participated in the experiments involving perturbations induced by a pendulum while their visual acuity was altered. The different visual acuity conditions were no glasses, blurred vision induced by wearing glasses with positive or negative lenses, and no vision. EMG activity of trunk and leg muscles and ground reaction forces were recorded during the typical anticipatory and compensatory periods. Results: In the no vision condition the subjects did not generate APAs, which resulted in the largest displacements of the center of pressure (COP) after the perturbation (p<0.01). In all other visual conditions APAs were present showing a distal to proximal order of muscle activation. The subjects wearing positive glasses showed earlier and larger anticipatory EMGs than while wearing negative glasses or no glasses at all. Conclusions: The study outcome revealed that changes in visual acuity induced by wearing differently powered eye glasses alter the generation APAs and as a consequence, affect the compensatory components of postural control. Significance: The observed changes in APAs and CPAs in conditions with blurred vision induced by positive and negative glasses suggest the importance of individuals’ using glasses with an appropriate power. This outcome should be taken into consideration in balance rehabilitation of individuals wearing glasses

    Comparison of 360° Turn Cycles among Individuals after Stroke and Healthy Older Adults

    No full text
    Stroke survivors are at high risk of falling during turning. The kinematics of performing a 360° turn have not been fully analyzed among individuals after stroke. Quantitative differences in the parameters of turning between healthy older adults and those after stroke could provide detailed information on turning ability among these groups. The purpose of the current study was to characterize differences between healthy older adults and adults after stroke in 360° turn kinematics. Fourteen individuals with chronic stroke (mean age: 69 ± 8.4 years) and 14 healthy older adults (mean age: 74 ± 8.7 years) performed three trials of 360° turning. Kinematics data were collected using 26 reflective markers at several body landmarks. This new method for quantifying turning revealed that stroke significantly affected the number of turn cycles, number of single support (SS) critical phases, and critical time. In some cases, falls among individuals with stroke may be related to the combination of impaired movement patterns and the complexity of tasks such as turning. Understanding turning kinematics can inform clinical interventions targeting improvements in turning ability and consequently, fall risk reduction in individuals after stroke

    Early and Late Components of Feed-forward Postural Adjustments to Predictable Perturbations

    No full text
    Objectives: The purpose was to investigate two types of feed-forward postural adjustments associated with preparation to predictable external perturbations. Methods: Nine subjects stood on a wedge, toes-up or toes-down while a pendulum impacted their shoulders. EMGs of leg and trunk muscles were analyzed within the framework of the uncontrolled manifold hypothesis. Results: Early postural adjustments (EPAs) were seen 400-500 ms and anticipatory postural adjustments (APAs), 100-150 ms prior to the impact. EPAs and APAs were also seen in the time profiles of muscle modes representing muscle groups with linear scaling of the activation levels. Center of pressure shifts were stabilized by co-varied adjustments in muscle mode magnitudes across trials. The index of these multi-muscle synergies showed two drops (anticipatory synergy adjustments, ASAs), prior to EPA and APA in each subject. The findings were consistent between the two conditions. Conclusions: The results show that feed-forward postural adjustments represent a sequence of two phenomena, EPAs and APAs. Each of those is preceded by ASAs that reduce stability of a variable that is to be adjusted during the EPAs and APAs. The findings fit a hierarchical scheme with synergic few-to-many mappings at each level of the hierarchy based on the referent body configuration hypothesis. Significance: The results show the complexity of the postural preparation to action. Potentially, they have implications for the current strategies of rehabilitation of patients with neuro-motor disorders characterized by impaired postural control

    Phyto-synthesis of silver nanoparticles using Alternanthera tenella leaf extract: an effective inhibitor for the migration of human breast adenocarcinoma (MCF-7) cells

    No full text
    In this study, phyto-synthesis of silver nanoparticles (AgNPs) was achieved using an aqueous leaf extract of Alternanthera tenella. The phytochemical screening results revealed that flavonoids are responsible for the AgNPs formation. The AgNPs were characterised using UV-visible spectrophotometer, field emission scanning microscopy/energy dispersive X-ray, transmission electron microscopy, fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction. The average size of the nanoparticles was found to be ≈48 nm. The EDX results show that strong signals were observed for the silver atoms. The strong band appearing at 1601-1595 cm-1 correspond to C-C stretching vibration from dienes in FT-IR spectrum indicating the formation of AgNPs. Human breast adenocarcinoma (MCF-7) cells treated with various concentrations of AgNPs showed a dose-dependent increase in cell inhibition. The IC50 value of the AgNPs was calculated to be 42.5 μg mL-1. The AgNPs showed a significant reduction in the migration of MCF-7 cells
    corecore