70 research outputs found

    A rare case of invasive mole with silent uterine perforation

    Get PDF
    Invasive mole is a condition where a molar pregnancy, such as a partial hydatidiform mole or complete hydatidiform mole, invades the wall of the uterus, potentially spreading and metastasizing to other parts of the body. Here is a case which presented with history of evacuation for molar pregnancy. She presented with irregular p/v bleeding on and off and after admission silent perforation with massive haemoperitoneum was detected for which emergency laparotomy with hysterectomy was done (operative photographs enclosed). She was given massive transfusion. She recovered and followed up till her beta hCG levels were within normal limits. As patient presented to us with haemoperitoneum and intraoperative there was invasion into whole of the uterus, it could not be saved and hysterectomy was done. Patient received 6 cycles of EMACO regime chemotherapy and was followed up for 6 months after beta hCG levels were within normal limits

    Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO)

    Get PDF
    The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.Comment: 139 pages, Physics White Paper of the ICAL (INO) Collaboration, Contents identical with the version published in Pramana - J. Physic

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Design and Development of Ground Collection System for Neem Fruit

    No full text
    India is one of the leading producers of neem in the world. But still, there is no mechanical system available for either harvesting the neem fruits from the tree or collecting the neem fruits from the ground. Also, the manual ground collection of neem fruit is a very laborious and time-consuming operation. The cost of ground collection of neem fruit is higher than its selling price which makes neem plantation uneconomical. The introduction of a collection system for collecting the neem fruit from the ground may represent the technological change that is the key factor for improved competitiveness. The main purpose of this work was to develop ground collection system based on the principle of suction. The design of the machinery was based on a determination of fruit geometry and its physical and engineering properties. The proposed innovation enabled a fully mechanical solution for collecting the fallen neem fruit from the ground, achieving a collection capacity of approximately 10 kg.h-1 with a collection efficiency of over 90%

    A Microfluidic Strategy to Capture Antigen‐Specific High‐Affinity B Cells

    No full text
    Assessing B cell affinity to pathogen‐specific antigens prior to or following exposure could facilitate the assessment of immune status. Current standard tools to assess antigen‐specific B cell responses focus on equilibrium binding of the secreted antibody in serum. These methods are costly, time‐consuming, and assess antibody affinity under zero force. Recent findings indicate that force may influence BCR‐antigen binding interactions and thus immune status. Herein, a simple laminar flow microfluidic chamber in which the antigen (hemagglutinin of influenza A) is bound to the chamber surface to assess antigen‐specific BCR binding affinity of five hemagglutinin‐specific hybridomas from 65 to 650 pN force range is designed. The results demonstrate that both increasing shear force and bound lifetime can be used to enrich antigen‐specific high‐affinity B cells. The affinity of the membrane‐bound BCR in the flow chamber correlates well with the affinity of the matched antibodies measured in solution. These findings demonstrate that a microfluidic strategy can rapidly assess BCR‐antigen‐binding properties and identify antigen‐specific high‐affinity B cells. This strategy has the potential to both assess functional immune status from peripheral B cells and be a cost‐effective way of identifying individual B cells as antibody sources for a range of clinical applications
    • 

    corecore