3,599 research outputs found

    Enhanced Accessibility for People with Disabilities Living in Urban Areas

    Get PDF
    [Excerpt] People with disabilities constitute a significant proportion of the poor in developing countries. If internationally agreed targets on reducing poverty are to be reached, it is critical that specific measures be taken to reduce the societal discrimination and isolation that people with disabilities continue to face. Transport is an important enabler of strategies to fight poverty through enhancing access to education, employment, and social services. This project aims to further the understanding of the mobility and access issues experienced by people with disabilities in developing countries, and to identify specific steps that can be taken to start addressing problems. A major objective of the project is to compile a compendium of guidelines that can be used by government authorities, advocacy groups, and donor/loan agencies to improve the access of people with disabilities to transport and other services in urban areas

    Functional analysis of the interaction of the human immunodeficiency virus type 1 Rev nuclear export signal with its cofactors

    Get PDF
    AbstractHuman immunodeficiency virus type 1 (HIV-1) Rev-mediated nuclear export of viral RNAs involves the interaction of its leucine-rich nuclear export sequence (NES) with nuclear cofactors. In yeast two-hybrid screens of a human lymph node derived cDNA expression library, we identified the human nucleoporin Nup98 as a highly specific and potent interactor of the Rev NES. Using an extensive panel of nuclear export positive and negative mutants of the functionally homologous NESs of the HIV-1 Rev, human T cell leukemia virus type 1 (HTLV-1) Rex, and equine infectious anemia virus (EIAV) Rev proteins, physiologically significant interaction of hNup98 with the various NESs was demonstrated. Missense mutations in the yeast nuclear export factor Crm1p that abrogated Rev NES interaction with the XXFG repeat-containing nucleoporin, Rab/hRIP, had minimal effects on the interaction of GLFG repeat-containing hNup98. Functional analysis of Nup98 domains required for nuclear localization demonstrated that the entire ORF was required for efficient incorporation into the nuclear envelope. A putative nuclear localization signal was identified downstream of the GLFG repeat region. Whereas overexpression of both full-length Nup98 and the amino-terminal GLFG repeat region, but not the unique carboxy-terminal region, induced significant suppression of HIV unspliced RNA export, lower levels of exogenous Nup98 expression resulted in a relatively modest increase in unspliced RNA export. These results suggest a physiological role for hNup98 in modulating Rev-dependent RNA export during HIV infection

    Optimized Broadcast for Deep Learning Workloads on Dense-GPU InfiniBand Clusters: MPI or NCCL?

    Full text link
    Dense Multi-GPU systems have recently gained a lot of attention in the HPC arena. Traditionally, MPI runtimes have been primarily designed for clusters with a large number of nodes. However, with the advent of MPI+CUDA applications and CUDA-Aware MPI runtimes like MVAPICH2 and OpenMPI, it has become important to address efficient communication schemes for such dense Multi-GPU nodes. This coupled with new application workloads brought forward by Deep Learning frameworks like Caffe and Microsoft CNTK pose additional design constraints due to very large message communication of GPU buffers during the training phase. In this context, special-purpose libraries like NVIDIA NCCL have been proposed for GPU-based collective communication on dense GPU systems. In this paper, we propose a pipelined chain (ring) design for the MPI_Bcast collective operation along with an enhanced collective tuning framework in MVAPICH2-GDR that enables efficient intra-/inter-node multi-GPU communication. We present an in-depth performance landscape for the proposed MPI_Bcast schemes along with a comparative analysis of NVIDIA NCCL Broadcast and NCCL-based MPI_Bcast. The proposed designs for MVAPICH2-GDR enable up to 14X and 16.6X improvement, compared to NCCL-based solutions, for intra- and inter-node broadcast latency, respectively. In addition, the proposed designs provide up to 7% improvement over NCCL-based solutions for data parallel training of the VGG network on 128 GPUs using Microsoft CNTK.Comment: 8 pages, 3 figure

    An Ex Vivo Approach to Complex Renal Artery Aneurysm Repair

    Get PDF
    Ex vivo repair technique for a complex renal artery aneurysm may have several advantages. Smaller incision size and use of minimally invasive techniques may decrease incisional morbidity and improve recovery time, especially in patients with a high body mass index. Improved visualization afforded by back-table methods may also be valuable when repair of aneurysms involving multiple branches is necessary. We report of a successful case of laparoscopic nephrectomy, followed by back-table aneurysmorrhaphy and autotransplant, in a patient with a renal artery aneurysm

    The Tumor Suppressor HHEX Inhibits Axon Growth when Prematurely Expressed in Developing Central Nervous System Neurons

    Get PDF
    Neurons in the embryonic and peripheral nervoussystem respond to injury by activating transcriptional programs supportive of axon growth, ultimately resulting in functional recovery. In contrast, neurons in the adult central nervous system (CNS) possess a limited capacity to regenerate axons after injury, fundamentally constraining repair. Activating pro-regenerative gene expression in CNS neurons is a promising therapeutic approach, but progress is hampered by incomplete knowledge of the relevant transcription factors. An emerging hypothesis is that factors implicated in cellular growth and motility outside the nervous system may also control axon growth in neurons. We therefore tested sixty-nine transcription factors, previously identified as possessing tumor suppressive or oncogenic properties in non-neuronal cells, in assays of neurite outgrowth. This screen identified YAP1 and E2F1 as enhancers of neurite outgrowth, and PITX1, RBM14, ZBTB16, and HHEX as inhibitors. Follow-up experiments are focused on the tumor suppressor HHEX, one of the strongest growth inhibitors. HHEX is widely expressed in adult CNS neurons, including corticospinal tract neurons after spinal injury, but is present only in trace amounts in immature cortical neurons and adult peripheral neurons. HHEX overexpression in early postnatal cortical neurons reduced both initial axonogenesis and the rate of axon elongation, and domain deletion analysis strongly implicated transcriptional repression as the underlying mechanism. These findings suggest a role for HHEX in restricting axon growth in the developing CNS, and substantiate the hypothesis that previously identified oncogenes and tumor suppressors can play conserved roles in axon extension

    Nanoindentation response of small-volume piezoelectric structures and multi-layered composites: modeling the effect of surrounding materials

    Get PDF
    With piezoelectric small-volume composites gaining importance in smart device applications and nanoindentation being recognized as a versatile method for assessing the properties of layer materials, the present study is focused on the indentation response of the small-volume piezoelectric structures multi-layered composites. In particular, the effects of the nature of the substrate and surrounding materials, on the indentation response of piezoelectric nanocomposites, such as nanoislands, nanowires, and multi-layered composites are investigated. By developing three-dimensional finite element modeling, the complex interaction between the fundamental elastic, piezoelectric and dielectric properties of the piezoelectric materials and the elastic, plastic and electrically conducting or insulating properties of the surrounding materials, on the indentation response of the layered composites is analyzed. It is found that: (i) a substrate material that is elastically stiffer enhances the mechanical indentation stiffness and the electric indentation stiffness while plastic deformation in the substrate causes a reduction in the mechanical and electrical indentation stiffness; (ii) the effective piezoelectric and mechanical indentation stiffnesses of piezoelectric multi-layered composites are bounded by the corresponding characteristics of the bulk material counterparts from which the individual layers are constructed; (iii) electrically conducting surrounding materials produce a softening effect while insulating materials enhance the electrical indentation stiffness resulting in more charges being accumulated during the indentation process
    corecore