2,983 research outputs found

    Perspectives on high temperature superconducting electronics

    Get PDF
    The major challenges in making high temperature superconducting (HTSC) electronics viable are predominantly materials problems. Unlike their predecessors the metal oxide-based superconductors are integratable with other advanced technologies such as opto-electronics and micro-electronics. The materials problems to be addressed relate to the epitaxial growth of high quality films, highly oriented films on non-lattice matched substrates, heterostructures with atomically sharp interfaces of junctions and other novel devices, and the processing of these films with negligible deterioration of the superconducting properties. These issues are illustrated with results based on films prepared in-situ by a pulsed laser deposition process. Films with zero-transition temperatures of 90 K and critical current densities of 5 x 10(exp 6) A/sq cm at 77 K have been prepared by this technique. Ultra-thin films, less than 100 A show T(sub c) is greater than 80 K, supporting the idea of two-dimensional transport in these materials. By the use of appropriate buffer layers, films with T(sub c) of 87 K and J(sub c) of 6 x 10(exp 4) A/sq cm were fabricated on silicon substrates. Submicron structures with J(sub c) is greater than 2 x 10(exp 7) at 10 K were fabricated. Results on nonlinear switching elements, IR detectors, and microwave studies will be briefly summarized

    Distributed Algorithms for Scheduling on Line and Tree Networks

    Full text link
    We have a set of processors (or agents) and a set of graph networks defined over some vertex set. Each processor can access a subset of the graph networks. Each processor has a demand specified as a pair of vertices , along with a profit; the processor wishes to send data between uu and vv. Towards that goal, the processor needs to select a graph network accessible to it and a path connecting uu and vv within the selected network. The processor requires exclusive access to the chosen path, in order to route the data. Thus, the processors are competing for routes/channels. A feasible solution selects a subset of demands and schedules each selected demand on a graph network accessible to the processor owning the demand; the solution also specifies the paths to use for this purpose. The requirement is that for any two demands scheduled on the same graph network, their chosen paths must be edge disjoint. The goal is to output a solution having the maximum aggregate profit. Prior work has addressed the above problem in a distibuted setting for the special case where all the graph networks are simply paths (i.e, line-networks). Distributed constant factor approximation algorithms are known for this case. The main contributions of this paper are twofold. First we design a distributed constant factor approximation algorithm for the more general case of tree-networks. The core component of our algorithm is a tree-decomposition technique, which may be of independent interest. Secondly, for the case of line-networks, we improve the known approximation guarantees by a factor of 5. Our algorithms can also handle the capacitated scenario, wherein the demands and edges have bandwidth requirements and capacities, respectively.Comment: Accepted to PODC 2012, full versio

    Double heterostructure lasers with facets formed by a hybrid wet and reactive-ion-etching technique

    Get PDF
    Double heterostructure lasers were fabricated in which one of the laser facets was produced by a hybrid wet and reactive-ion-etching technique. This technique is suitable for GaAs/GaAlAs heterostructure lasers and utilizes the selectivity of the plasma in preferentially etching GaAs over GaAlAs. Lasers fabricated by this technique are compatible with optoelectronic integration and have threshold currents and quantum efficiency comparable to lasers with both mirrors formed by cleaving. The technique enables the use of relatively higher pressures of noncorrosive gases in the etch plasma resulting in smoother mirror surfaces and further eliminates the nonreproducibility inherent in the etching of GaAlAs layers

    Effects of annealing and strain on La_{1-x}Ca_{x}MnO_{3} thin films: a new phase diagram in the ferromagnetic region

    Full text link
    Oriented, single phase thin films of La_{1-x}Ca_{x}MnO_{3} have been deposited onto (100)-oriented LaAlO_{3} (0.1<x<0.5) substrates using the Pulsed Laser Deposition technique. While for some compositions the physical properties (transport and magnetization) of the as-grown films are higher than the bulk values, for other calcium contents the optimized properties are obtained only after annealing under oxygen. These data can be partly explained by changes in oxygen content, resulting in cationic vacancies and thus self-doping effects - accompanying structural changes, may be the cause of properties beyond the phase diagram. We propose a new phase diagram for (La_{1-x}Ca_{x})_{1-y}\square_{y}MnO_{3} (0.1<x<0.5) thin films.Comment: 8 pages, 5 figures submitted to Applied Physics Letter

    Modal properties of unstable resonator semiconductor lasers with a lateral waveguide

    Get PDF
    The modal properties of unstable resonator lasers with a lateral waveguide have been analyzed, and an unstable resonator semiconductor laser with a real index lateral waveguide has been demonstrated. Output powers in excess of 400 mW were observed with a stable, highly coherent lateral field distribution. The incorporation of a lateral real index waveguide with the unstable resonator configuration results in an increase in the external quantum efficiency and the appearance of ripples in the lateral field distribution

    Unstable resonator cavity semiconductor lasers

    Get PDF
    GaAs heterostructure lasers with unstable resonator cavities were demonstrated for the first time with both curved mirrors fabricated by etching. Typical output powers of 0.35 W were observed in a stable, highly coherent lateral mode. The laser operated stably in a single longitudinal mode over a large range of injection currents. The external quantum efficiency was 70% of that of a similar laser with both mirror facets cleaved implying good output coupling of the energy from the entire region

    Magnetoresistance in the superconducting state at the (111) LaAlO3_3/SrTiO3_3 interface

    Full text link
    Condensed matter systems that simultaneously exhibit superconductivity and ferromagnetism are rare due the antagonistic relationship between conventional spin-singlet superconductivity and ferromagnetic order. In materials in which superconductivity and magnetic order is known to coexist (such as some heavy-fermion materials), the superconductivity is thought to be of an unconventional nature. Recently, the conducting gas that lives at the interface between the perovskite band insulators LaAlO3_3 (LAO) and SrTiO3_3 (STO) has also been shown to host both superconductivity and magnetism. Most previous research has focused on LAO/STO samples in which the interface is in the (001) crystal plane. Relatively little work has focused on the (111) crystal orientation, which has hexagonal symmetry at the interface, and has been predicted to have potentially interesting topological properties, including unconventional superconducting pairing states. Here we report measurements of the magnetoresistance of (111) LAO/STO heterostructures at temperatures at which they are also superconducting. As with the (001) structures, the magnetoresistance is hysteretic, indicating the coexistence of magnetism and superconductivity, but in addition, we find that this magnetoresistance is anisotropic. Such an anisotropic response is completely unexpected in the superconducting state, and suggests that (111) LAO/STO heterostructures may support unconventional superconductivity.Comment: 6 Pages 4 figure

    The effect of substrate induced strain on the charge-ordering transition in Nd_{0.5}Sr_{0.5}MnO_{3} thin films

    Full text link
    We report the synthesis and characterization of Nd_{0.5}Sr_{0.5}MnO_{3} thin films grown by the Pulsed Laser Deposition technique on 100 -oriented LaAlO_{3} substrates. X-ray diffraction (XRD) studies show that the films are 101 -oriented, with a strained and quasi-relaxed component, the latter increasing with film thickness. We observe that transport properties are strongly dependent on the thickness of the films. Variable temperature XRD down to 100 K suggests that this is caused by substrate induced strain on the films.Comment: 3 pages REVTeX, 4 figures included, submitted to AP
    corecore