114 research outputs found

    Young stellar populations in early-type dwarf galaxies; occurrence, radial extent and scaling relations

    Get PDF
    To understand the stellar population content of dwarf early-type galaxies (dEs) and its environmental dependence, we compare the slopes and intrinsic scatter of color-magnitude relations (CMRs) for three nearby clusters, Fornax, Virgo and Coma. Additionally we present and compare internal color profiles of these galaxies to identify central blue regions with younger stars. We use the imaging of the HST/ACS Fornax cluster in the magnitude range of -18.7 <= M_g' <= -16.0, to derive magnitudes, colors and color profiles, which we compare with literature measurements. Based on analysis of the color profiles, we report a large number of dEs with young stellar populations in their center in all three clusters. While for Virgo and Coma the number of blue-cored dEs is found to be 85 +/- 2% and 53 +/- 3% respectively, for Fornax, we find that all galaxies have a blue core. We show that bluer cores reside in fainter dEs, similar to the trend seen in nucleated dEs. We find no correlation between the luminosity of the galaxy and the size of its blue core. Moreover, a comparison of the CMRs of the three clusters shows that the scatter in Virgo's CMR is considerably larger than in the Fornax and Coma clusters. Presenting adaptive smoothing we show that the galaxies on the blue side of the CMR often show evidence for dust extinction, which strengthens the interpretation that the bluer colors are due to young stellar populations. We also find that outliers on the red side of the CMR are more compact than expected for their luminosity. We find several of these red outliers in Virgo, often close to more massive galaxies. No red outlying compact early-types are found in Fornax and Coma in this magnitude range while we find three in the Virgo cluster. We suggest that the large number of outliers and larger scatter found for the Virgo cluster CMR is a result of Virgo's different assembly history.Comment: 24 pages, accepted for publication in Astronomy and Astrophysic

    A possible signature of the influence of tidal perturbations in dwarf galaxy scaling relations

    Get PDF
    © 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/)Dwarf galaxies are excellent cosmological probes, because their shallow potential wells make them very sensitive to the key processes that drive galaxy evolution, including baryonic feedback, tidal interactions, and ram pressure stripping. However, some of the key parameters of dwarf galaxies, which help trace the effects of these processes, are still debated, including the relationship between their sizes and masses. We re-examine the Fornax Cluster dwarf population from the point of view of isomass-radius--stellar mass relations (IRSMRs) using the Fornax Deep Survey Dwarf galaxy Catalogue, with the centrally located (among dwarfs) 3.63M⊙3.63 \mathcal{M}_{\odot}~pc−2^{-2} isodensity radius defining our fiducial relation. This relation is a powerful diagnostic tool for identifying dwarfs with unusual structure, as dwarf galaxies' remarkable monotonicity in light profile shapes, as a function of stellar mass, reduces the relation's scatter tremendously. By examining how different dwarf properties (colour, tenth-nearest-neighbour distance, etc.) correlate with distance from our fiducial relation, we find a significant population of structural outliers with comparatively lower central mass surface density and larger half-light-radii, residing in locally denser regions in the cluster, albeit with similar red colours. We propose that these faint, extended outliers likely formed through tidal disturbances, which make the dwarfs more diffuse, but with little mass loss. Comparing these outliers with ultra-diffuse galaxies (UDGs), we find that the term UDG lacks discriminatory power; UDGs in the Fornax Cluster lie both on and off of IRSMRs defined at small radii, while IRSMR outliers with masses below ∼107.5M⊙\sim 10^{7.5} \mathcal{M}_{\odot} are excluded from the UDG classification due to their small effective radii.Peer reviewe

    The Fornax Deep Survey with VST. VIII. Connecting the accretion history with the cluster density

    Full text link
    This work is based on deep multi-band (g, r, i) data from the Fornax Deep Survey with VST. We analyse the surface brightness profiles of the 19 bright ETGs inside the virial radius of the Fornax cluster. The main aim of this work is to identify signatures of accretion onto galaxies by studying the presence of outer stellar halos, and understand their nature and occurrence. Our analysis also provides a new and accurate estimate of the intra-cluster light inside the virial radius of Fornax. We performed multi-component fits to the azimuthally averaged surface brightness profiles available for all sample galaxies. This allows to quantify the relative weight of all components in the galaxy structure that contribute to the total light. In addition, we derived the average g-i colours in each component identified by the fit, as well as the azimuthally averaged g-i colour profiles, to correlate them with the stellar mass of each galaxy and the location inside the cluster. We find that in the most massive and reddest ETGs the fraction of light in, probably accreted, halos is much larger than in the other galaxies. Less-massive galaxies have an accreted mass fraction lower than 30%, bluer colours and reside in the low-density regions of the cluster. Inside the virial radius of the cluster, the total luminosity of the intra-cluster light, compared with the total luminosity of all cluster members, is about 34%. Inside the Fornax cluster there is a clear correlation between the amount of accreted material in the stellar halos of galaxies and the density of the environment in which those galaxies reside. By comparing this quantity with theoretical predictions and previous observational estimates, there is a clear indication that the driving factor for the accretion process is the total stellar mass of the galaxy, in agreement with the hierarchical accretion scenario.Comment: 18 pages, 10 figures. Accepted for publication in A&

    Constraining the top-light initial mass function in the extended ultraviolet disk of M83

    Full text link
    The universality or non-universality of the initial mass function (IMF) has significant implications for determining star formation rates and star formation histories from photometric properties of stellar populations. We reexamine whether the IMF is deficient in high-mass stars (top-light) in the low-density environment of the outer disk of M83 and constrain the shape of the IMF therein. Using archival Galaxy Evolution Explorer (GALEX) far ultraviolet (FUV) and near ultraviolet (NUV) data and new deep OmegaCAM narrowband Hα\alpha imaging, we constructed a catalog of FUV-selected objects in the outer disk of M83. We counted Hα\alpha-bright clusters and clusters that are blue in FUV−-NUV in the catalog, measured the maximum flux ratio FHα/fλFUVF_{\mathrm{H}\alpha}/f_{\lambda \mathrm{FUV}} among the clusters, and measured the total flux ratio ΣFHα/ΣfλFUV\Sigma F_{\mathrm{H}\alpha}/\Sigma f_{\lambda \mathrm{FUV}} over the catalog. We then compared these measurements to predictions from stellar population synthesis models made with a standard Salpeter IMF, truncated IMFs, and steep IMFs. We also investigated the effect of varying the assumed internal extinction on our results. We are not able to reproduce our observations with models using the standard Salpeter IMF or the truncated IMFs. It is only when assuming an average internal extinction of 0.10<AV<0.150.10 < A_{\mathrm{V}} < 0.15 in the outer disk stellar clusters that models with steep IMFs (α>3.1\alpha > 3.1) simultaneously reproduce the observed cluster counts, the maximum observed FHα/fλFUVF_{\mathrm{H}\alpha}/f_{\lambda \mathrm{FUV}}, and the observed ΣFHα/ΣfλFUV\Sigma F_{\mathrm{H}\alpha}/\Sigma f_{\lambda \mathrm{FUV}}. Our results support a non-universal IMF that is deficient in high-mass stars in low-density environments.Comment: 18 pages, 15 figures, accepted to Astronomy & Astrophysic

    The Fornax Deep Survey with VST. I. The extended and diffuse stellar halo of NGC~1399 out to 192 kpc

    Get PDF
    [Abrigded] We have started a new deep, multi-imaging survey of the Fornax cluster, dubbed Fornax Deep Survey (FDS), at the VLT Survey Telescope. In this paper we present the deep photometry inside two square degrees around the bright galaxy NGC1399 in the core of the cluster. We found a very extended and diffuse envelope surrounding the luminous galaxy NGC1399: we map the surface brightness out to 33 arcmin (~ 192 kpc) from the galaxy center and down to about 31 mag/arcsec^2 in the g band. The deep photometry allows us to detect a faint stellar bridge in the intracluster region between NGC1399 and NGC1387. By analyzing the integrated colors of this feature, we argue that it could be due to the ongoing interaction between the two galaxies, where the outer envelope of NGC1387 on its east side is stripped away. By fitting the light profile, we found that it exists a physical break radius in the total light distribution at R=10 arcmin (~58 kpc) that sets the transition region between the bright central galaxy and the outer exponential stellar halo. We discuss the main implications of this work on the build-up of the stellar halo at the center of the Fornax cluster. By comparing with the numerical simulations of the stellar halo formation for the most massive BCGs, we find that the observed stellar halo mass fraction is consistent with a halo formed through the multiple accretion of progenitors with a stellar mass in the range 10^8 - 10^11 M_sun. This might suggest that the halo of NGC1399 has also gone through a major merging event. The absence of a significant number of luminous stellar streams and tidal tails out to 192 kpc suggests that the epoch of this strong interaction goes back to an early formation epoch. Therefore, differently from the Virgo cluster, the extended stellar halo around NGC1399 is characterised by a more diffuse and well-mixed component, including the ICL.Comment: Accepted for publication in ApJ; 25 pages and 14 figures. An higher resolution file is available at the following link https://www.dropbox.com/s/fvltppduysdn6pb/NGC1399_fin_2c.pdf?dl=

    The Fornax Deep Survey with VST. II. Fornax A: a two-phase assembly caught on act

    Get PDF
    As part of the Fornax Deep Survey with the ESO VLT Survey Telescope, we present new gg and rr bands mosaics of the SW group of the Fornax cluster. It covers an area of 3×23 \times 2 square degrees around the central galaxy NGC1316. The deep photometry, the high spatial resolution of OmegaCam and the large covered area allow us to study the galaxy structure, to trace stellar halo formation and look at the galaxy environment. We map the surface brightness profile out to 33arcmin (∼200\sim 200kpc ∼15Re\sim15R_e) from the galaxy centre, down to μg∼31\mu_g \sim 31 mag arcsec−2^{-2} and μr∼29\mu_r \sim 29 mag arcsec−2^{-2}. This allow us to estimate the scales of the main components dominating the light distribution, which are the central spheroid, inside 5.5 arcmin (∼33\sim33 kpc), and the outer stellar envelope. Data analysis suggests that we are catching in act the second phase of the mass assembly in this galaxy, since the accretion of smaller satellites is going on in both components. The outer envelope of NGC1316 still hosts the remnants of the accreted satellite galaxies that are forming the stellar halo. We discuss the possible formation scenarios for NGC1316, by comparing the observed properties (morphology, colors, gas content, kinematics and dynamics) with predictions from cosmological simulations of galaxy formation. We find that {\it i)} the central spheroid could result from at least one merging event, it could be a pre-existing early-type disk galaxy with a lower mass companion, and {\it ii)} the stellar envelope comes from the gradual accretion of small satellites.Comment: Accepeted for publication in Ap

    Globular clusters in the Fornax cluster: A report from the FDS survey

    Get PDF
    The Fornax Deep Survey (FDS) is a multi-band imaging survey of the Fornax cluster of galaxies, executed with the ESO VLT Survey Telescope (VST). The survey is designed to reach unprecedented surface brightness and point-source magnitude depth over one virial radius of the cluster. The scientific objectives of the survey are numerous: the study of the galaxy luminosity function, derivation of galaxy scaling relations, determination of the properties of compact stellar systems, an accurate determination of distances and 3-D geometry of the Fornax cluster, analysis of diffuse stellar light and galaxy interactions, etc

    The Fornax Cluster VLT Spectroscopic Survey: IV. Cold kinematical substructures in the Fornax core from COSTA

    Get PDF
    Context. Substructures in stellar haloes are a strong prediction of galaxy formation models in ΛCDM. Cold streams such as those from small satellite galaxies are extremely difficult to detect and kinematically characterize. The COld STream finder Algorithm (COSTA) is a novel algorithm able to find streams in the phase space of planetary nebulae (PNe) and globular cluster (GC) populations. COSTA isolates groups of (N) particles with small velocity dispersion (between 10 km s−1 and ∼120 km s−1) using an iterative (n) sigma-clipping over a defined number of (k) neighbor particles. Aims: We applied COSTA to a catalog of PNe and GCs from the Fornax Cluster VLT Spectroscopic Survey (FVSS) within ∼200 kpc from the cluster core in order to detect cold substructures and characterize their kinematics (mean velocity and velocity dispersion). Methods: We selected more than 2000 PNe and GCs from the FVSS catalogs and adopted a series of optimized setups of the COSTA parameters based on Montecarlo simulations of the PN and GC populations to search for realistic stream candidates. We find 13 cold substructures with velocity dispersion ranging from ∼20 to ∼100 km s−1, which are likely associated either to large galaxies or to ultra-compact dwarf (UCD) galaxies in the Fornax core. Results: The luminosities of these streams show a clear correlation with internal velocity dispersion, and their surface brightness correlates with their size and distance from the cluster center, which is compatible with the dissipative processes producing them. However, we cannot exclude that some of these substructures formed by violent relaxation of massive satellites that finally merged into the central galaxy. Among these substructures we have: (1) a stream connecting NGC 1387 to the central galaxy, NGC 1399, previously reported in the literature; (2) a new giant stream produced by the interaction of NGC 1382 with NGC 1380 and (possibly) NGC 1381; (3) a series of streams kinematically connected to nearby UCDs; and (4) clumps of tracers with no clear kinematical association to close cluster members. Conclusions: We show evidence for a variety of cold substructures predicted in simulations. Most of the streams are kinematically connected to UCDs, supporting the scenario that they can be remnants of disrupted dwarf systems. However, we also show the presence of long coherent substructures connecting cluster members and isolated clumps of tracers possibly left behind by their parent systems before these merged into the central galaxy. Unfortunately, the estimated low-surface brightness of these streams does not allow us to find their signatures in the current imaging data and deeper observations are needed to confirm them

    Intracluster Patches of Baryons in the Core of the Fornax Cluster

    Get PDF
    In the core of the Fornax cluster, on the west side of NGC 1399, we have detected a previously unknown region of intracluster light (ICL). It is made up by several faint ({μ }r≃ 28{--}29 mag arcsec‑2) patches of diffuse light. The bulk of the ICL is located in between the three bright galaxies in the core, NGC 1387, NGC 1379, and NGC 1381, at 10≤slant R≤slant 40 arcmin (∼58–230 kpc) from the central galaxy NGC 1399. We show that the ICL is the counterpart in the diffuse light of the known over-density in the population of blue globular clusters (GCs). The total g-band luminosity of the ICL is {L}g≃ 8.3× {10}9 L ⊙, which is ∼5% of the total luminosity of NGC 1399. This is consistent with the fraction of the blue GCs in the same region of the cluster. The ICL has g-r∼ 0.7 mag, which is similar to the colors in the halo of the bright galaxies in the cluster core. The new findings were compared with theoretical predictions for the ICL formation and they support a scenario in which the intracluster population detected in the core of the Fornax cluster is build up by the tidal stripping of material (stars and GCs) from galaxy outskirts in a close passage with the central brightest galaxy (cD). Moreover, the diffuse form of the ICL and its location close to the core of the cluster is expected in a dynamically evolved cluster like Fornax

    A possible signature of the influence of tidal perturbations in dwarf galaxy scaling relations

    Get PDF
    Dwarf galaxies are excellent cosmological probes, because their shallow potential wells make them very sensitive to the key processes that drive galaxy evolution, including baryonic feedback, tidal interactions, and ram pressure stripping. However, some of the key parameters of dwarf galaxies, which help trace the effects of these processes, are still debated, including the relationship between their sizes and masses. We re-examine the Fornax Cluster dwarf population from the point of view of isomass-radius–stellar mass relations (IRSMRs) using the Fornax Deep Survey Dwarf galaxy Catalogue, with the centrally located (among dwarfs) 3.63M☉ pc-2 isodensity radius defining our fiducial relation. This relation is a powerful diagnostic tool for identifying dwarfs with unusual structure, as dwarf galaxies’ remarkable monotonicity in light profile shapes, as a function of stellar mass, reduces the relation’s scatter tremendously. By examining how different dwarf properties (colour, 10th nearest neighbour distance, etc.) correlate with distance from our fiducial relation, we find a significant population of structural outliers with comparatively lower central mass surface density and larger half-light-radii, residing in locally denser regions in the cluster, albeit with similar red colours. We propose that these faint, extended outliers likely formed through tidal disturbances, which make the dwarfs more diffuse, but with little mass-loss. Comparing these outliers with ultra-diffuse galaxies (UDGs), we find that the term UDG lacks discriminatory power; UDGs in the Fornax Cluster lie both on and off of IRSMRs defined at small radii, while IRSMR outliers with masses below ∼ 107.5M☉ are excluded from the UDG classification due to their small effective radii
    • …
    corecore