65 research outputs found

    Characterising the wave power potential of the Scottish coastal environment

    Get PDF
    The study focuses around the energetic waters of Scotland that has expressed high interest in the development of wave energy farms. There are only a few long-term suitable studies characterising coastal locations. A detail coastal resource assessment is provided, focusing on wave energy and site characterisation. Mean nearshore energy content in the Western coasts is ≥50 kW/m and on the East ≈10 kW/m. Monthly and seasonal analyses outline available resource and annual variations. Availability of production is also examined, West coastlines present higher levels, however, depending on resource and wave converters operational range significant differences are shown. Availability levels on the East coastline are low ≈40% due to lower wave heights, while Western locations record consistently over 80% at both scenarios examined. Results discuss the potential applicability of favourable wave converters, and characteristics which achieve maximum utilisation based on the local environment

    Hydrodynamic force coefficients for rectangular cylinders in waves and currents

    Get PDF
    The research into hydrodynamic loading on ocean structures is concentrated mostly on circular cross section members and relatively limited work has been carried out on wave loading on rectangular sections, particularly in waves and currents. This research work is therefore carried out focussing on the evaluation of hydrodynamic force coefficients for sharp edged rectangular cylinders of various cross-sections (aspect ratios), subjected to waves and currents. Three cylinders with three different cross-sections are constructed and tested vertically, as surface piercing and horizontally, as fully submerged with the cylinder axis parallel to the wave crests. The aspect ratios considered for this investigation are 1.0, 112, 2/1, 3/4 and 4/3. The length of each cylinder is 2000mm. The sectional loadings are measured on a 100mm section, which is located at the mid-length of the cylinder. The forces are measured using a force measuring system, which consists of load cells, capable of measuring wave and current forces. The in-line & transverse forces (for vertical cylinders) and horizontal & vertical forces (for horizontal cylinders) have been measured. For horizontal cylinder, to study the effect of depth of variation on submergence of the cylinder, the tests are carried out for two depths of submergence. The experiments are carried out at the Hydrodynamic Laboratory, Department of Naval Architecture and Ocean Engineering, University of Glasgow. The tests are carried out in a water depth of 2.2m with regular and random waves for low Keulegan-Carpenter (KC) number up to 4.5 and the Reynolds number varied from 6.397xl03 to 1.18xl05 • The combined wave and current effect has been produced by towing the cylinders in regular waves, along and opposite to the wave direction at speeds of ± 0.1 mis, ± 0.2 mls and ± 0.3 mls. Based on Morison's equation, the relationship between inertia and drag coefficients are evaluated and are presented as a function of KC number for various values of frequency parameter, {3. For the vertical cylinders, the drag coefficients decrease and inertia coefficients increase with increase in KC number up to the range of KC tested for all the cylinders. For the horizontally submerged cylinders, the drag coefficients showed a similar trend to vertical cylinders, whereas the inertia coefficients decrease with increase in KC number for all the cylinders. This reduction in inertia force is attributed to the presence of a circulating flow [Chaplin (1984)] around the cylinders. The random wave results are consistent with regular wave results and the measured and computed force spectrum compares quite well. While computing the force coefficients in the case of combined waves and currents, only the wave particle velocity is used, as the inclusion of current velocity tends to produce unreliable drag force coefficients. For vertical cylinders, the drag and the inertia coefficients in combined waves and currents are lower than the drag and the inertia coefficients obtained in waves alone. For horizontal cylinders the drag coefficients are larger than those obtained for waves alone and the inertia coefficients are smaller than those measured in waves alone. The Morison's equation with computed drag and inertia coefficients has been found to predict the measured forces well for smaller KC numbers. However, the comparison between measured and computed positive peak forces indicate that the computed forces are underestimated. It is suggested that if the wave particle kinematics are directly measured, this discrepancy between measured and computed forces might well be reduced. Wave excitation forces are also reported in non-dimensional forms in the diffraction regime, using 3D-Green function method. Wave induced pressure distribution around the cylinder in regular waves have been measured and are reported as normalised pressures. Wave run-up on the cylinder surfaces has been measured and simple empirical formulae are presented for run-up calculations on the cylinder surfaces. The results of this investigation show that the cylinder aspect ratio plays major role on hydrodynamic force coefficients, dynamic pressure distribution and on wave run-up on cylinder surfaces

    On the Variation of Turbulence in a High-Velocity Tidal Channel

    Get PDF
    This study presents the variation in turbulence parameters derived from site measurements at a tidal energy test site. Measurements were made towards the southern end of the European Marine Energy Centre’s tidal energy test site at the Fall of Warness (Orkney, Scotland). Four bottom mounted divergent-beam Acoustic Doppler Current Profilers (ADCPs) were deployed at three locations over an area of 2 km by 1.4 km to assess the spatial and temporal variation in turbulence in the southern entrance to the channel. During the measurement campaign, average flood velocities of 2 ms−1 were recorded with maximum flow speeds of 3 ms−1 in the absence of significant wave activity. The velocity fluctuations and turbulence parameters show the presence of large turbulent structures at each location. The easternmost profiler located in the wake of a nearby headland during ebb tide, recorded flow shielding effects that reduced velocities to almost zero and produced large turbulence intensities. The depth-dependent analysis of turbulence parameters reveals large velocity variations with complex profiles that do not follow the standard smooth shear profile. Furthermore, turbulence parameters based on data collected from ADCPs deployed in a multi-carrier frame at the same location and time period, show significant differences. This shows a large sensitivity to the make and model of ADCPs with regards to turbulence. Turbulence integral length scales were calculated, and show eddies exceeding 30 m in size. Direct comparison of the length scales derived from the streamwise velocity component and along-beam velocities show very similar magnitudes and distributions with tidal phase
    • …
    corecore