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Abstract

Wind is the dominant process for wave generation. Detailed evaluation
of metocean conditions, strengthen our understanding of issues concerning
potential offshore applications. However, the scarcity of buoys and high cost
of monitoring systems pose a barrier to properly defining offshore conditions.
Through use of numerical wave models, metocean conditions can be hind-
casted and forecasted providing reliable characterisations.

This study reports the sensitivity of wind inputs on a numerical wave
model for the Scottish region. Two re-analysis wind datasets with different
spatio-temporal characteristics are used, the ERA-Interim Re-Analysis and
the CFSR-NCEP Re-Analysis dataset. Different wind products alter results,
affecting the accuracy obtained. The scope of this study is to assess differ-
ent available wind databases and provide information concerning the most
appropriate wind dataset for the specific region, based on temporal, spatial
and geographic terms for wave modelling and offshore applications. Both
wind inputs resulted results from the numerical wave model with good cor-
relation. Wave results by the 1-hour dataset have higher peaks and lower
biases, in expense of a high scatter index. On the other hands, the 6-hour
dataset has lower scatter but higher biases. The study, shows that how wind
dataset affect the numerical wave modelling performance and that depending
on location and study needs, different wind inputs should be considered.
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1. Introduction

Waves and offshore environments have been a part of research for decades,
however when considering energy production by renewable energy (RE) sys-
tems, understanding and evaluating the available resource is of major im-
portance. Continuous research developments have provided tools that allow
us to simulate, hindcast, and forecast sea states, through use of numerical
modelling. Currently, we are in the third generation of numerical wave mod-
els, that are applied to oceanic and nearshore (coastal) applications (Komen
et al., 1994; Holthuijsen, 2007).

One of the most important aspects in the use of numerical wave mod-
els is the quality of inputs, for both oceanic or coastal applications. Wind
is one of the key parameters for wave generation and propagation. Wind
data are provided by various international and local governmental bodies.
Each organisation uses different Re-analysis techniques and usually based
on different atmospheric models, providing datasets with various temporal
and spatial resolutions. In this study two of the most recent products of
such models are used, the ERA-Interim Re-Analysis from European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) (Dee et al., 2011), and
CFSR-NCEP Re-Analysis dataset provided by the National Centre for Atmo-
spheric Research and the National Oceanic and Atmospheric Administration
(NOAA), (Saha et al., 2010). They are used to compare the performance
of hindcast by a nearhore wave numerical model applied in Scotland, previ-
ously taglobal inter-comparison study between has been outlined by Stopa
and Cheung (2014) emphasising the differences of wind datasets.

Variability of data and lack of recording wind stations in offshore envi-
ronments, drove researchers to investigate the validity and accuracy levels of
the predicted wind by coupling them with large oceanic numerical models
(Bidlot et al., 2005, 2006). Previous studies assessed the data information of
several re-analysis datasets using existing wind measurements (Caires et al.,
2004; Stopa and Cheung, 2014), buoy and numerical models were used to
establish the optimal wind dataset. Results however were mixed, indicating
different correlations between wind and waves depending on location, for the
Northern or South Hemisphere (Stopa et al., 2013).

Due to the extent of the wind resource examination, previous studies
used oceanic models to investigate and assess the wind datasets. Focus of
this study is the assessment of different spatio-temporal wind products with
a nearshore wave model. The output exhibits which wind input can pro-
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vide better hindcast and forecast results for nearsbore Scotland region. For
this reason the an appropriate nearshore model is selected and driven with
re-analysis data, results underline expected differences in wave conditions
produced from different wind products.

The choice of a nearshore numerical model, Simulating WAves Nearshore
(SWAN) model, (Delft, 2014a), was based on the fact, that majority of off-
shore and marine energy applications is intended in depths not exceeding
150m (Waveplam, 2009; Carbon Trust and AMEC, 2012). Thus, a detailed
solution of the nearshore physics is required, something that is not often
met at larger oceanic models. Although approximations exist, SWAN has
been validated and shown to work well for nearshore and medium scale mod-
els (shelf seas) (Akpinar and Kömürcü, 2013; Bunney, 2011; Janssen, 2008;
Booij et al., 1999).

Results are useful for numerical wave modelling, by identifying the perfor-
mance of different wind products and validating the data against buoy mea-
surements. Indicating the selection of most appropriate dataset for nearshore
modelling in Scotland, and expected behaviour based on wind inputs. En-
hancing confidence in the data outputs, and allowing for modelled data to
be considered even at location where not buoys exist.

2. Numerical Model

Knowledge in evaluation of wave resource assessments has been improv-
ing over the years, with new computational advancements and wave theory
re-formulations in numerical models. From the Airy’s theory of small ampli-
tude waves in finite environments, to Miles generation of waves and Janssen’s
improvements on wind generated waves, the understanding of waves has im-
proved significantly (Janssen, 2009; Holthuijsen, 2007). However, waves do
not follow linear wave theory and their nature is far more complex. To
overcome this, numerical models have been applied to resolve non-linearity
of waves. Numerical models such as WAve Model (WAM) (WAMDI, 1988;
Komen et al., 1994), and WaveWatch 3 (WW3) (Tolman and development
Group, 2014) have been used for oceanic applications. For nearsore appli-
cations with shallow water SWAN and MIKE21 are often preferred (Delft,
2014a; Venugopal et al., 2010).

SWAN is a third generation model, developed by Delft University,(Delft,
2014b), as the necessity of the solving nearshore environments increased
(WAMDI, 1988). Numerical wave models can be separated in stochastic
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or deterministic, implicit or explicit, SWAN is a phase-averaged model that
resolves the action balance equation in Cartesian or Spherical coordinates.
Additionally, nearshore physics are enhanced with approaches that are often
not included in larger models, due to increase of computational demands
(Holthuijsen, 2007; Delft, 2014b). For simple computations Cartesian sta-
tionary computations are advised.

The action balance equation in SWAN is solved in terms of radian fre-
quency (σ) with all shallow water physics attributed. The wave kinematic
equation is given in a non-stationary (t) solution, with Spherical coordinates
of latitude (λ) and longitude (ϕ), frequency (σ), direction (θ) and group
velocities in both latitude and longitude (Cg).

∂N(σ;λ; θ; t)

∂t
+
∂Cg,λN(σ;λ; θ; t)

∂λ
+ cosφ−1 · ∂Cf,φN(σ;λ; θ; t)

∂φ
+

∂Cf,θN(σ;λ; θ; t)

∂θ
+
∂Cf,σN(σ;λ; θ; t)

∂σ
=
S(σ; θ;λ;ϕ; t)

σ
(1)

SWAN source terms allow for multiple physics to be implemented in
the calculations, with detailed nearshore water components distinguishing
SWAN from its oceanic counterparts. By taking into account complex terms
of dissipation, bottom friction, depth breaking, triad interactions, diffrac-
tion, and diffusion the results can provide a more accurate description of
the nearshore environment. Source terms Eq. 2 are: wind input (Sin), tri-
ads (Snl3), quadruplet (Snl4) interactions, whitecapping (Sds,w), bottom fric-
tion (Sds,b) and (Sds,br) depth breaking. Additionally all the terms allow a
wide range of computational alternatives, based on research and experiments
(Delft, 2014a).

Stot = Sin + Snl3 + Snl4 + Sds,w + Sds,b + Sds,br (2)

In our model Sin is based on Janssen’s exponential growth theory, which
has been incorporated in the WAM4 distribution (Janssen, 1991). Quadru-
plet interactions Snl4 are activated with a semi-explicit solution, and Snl3 are
also activated. Both these terms are important to be considered since they
represent the exchange of frequencies between waves and wind (Snl4), as they
propagate from deep to shallow water (Snl3). Thus allowing the exchange of
frequencies to be resolved and the energy re-distributed (Hasselmann et al.,
1985; Holthuijsen, 2007; Van Der Westhuysen et al., 2007). Bottom friction
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and depth interaction terms are also enabled their coefficients in this study
are tuned based on Zijlema et al. (2012). Vegetation and mud transport were
not accounted for, refraction and diffraction terms were also activated.

Furthermore, apart from different physical terms chosen, several numeri-
cal changes can be made affecting the computational processes. These were
mainly focused on the calculations and iteration number. Alteration in the re-
computation use of the boundary conditions were used, SWAN re-computes
the incoming boundary waves, thus a criteria was set for difference between
the incoming waves and re-computed ones, not to exceed 5% than the bound-
ary inputs.

3. Model Set-up and Modelling Process

The main objective of this work is to establish the optimal selection of
wind input for the region of Scotland. The assessment of wind data, is focused
at the North Sea area (East of Scotland) and the Outer Hebrides (West of
Scotland), see Fig. 1. The Outer Hebrides are exposed to the Atlantic and
thus its boundaries are more exposed to swells and strong wind. Swells
from the North Sea also occur mainly from the Northern bounday, however
their intensity is relatively weaker in comparison to the North-West Atlantic
swells. In order to include long distance swells into the model domain, wave
boundary conditions are constructed and applied to the model.

3.1. Bathymetry and Model Domain

Bathymetric data were extracted from NOAA’s database ETOPO1 (Amante
and Eakins, 2014), using the 1 arc minute bathymetry is used to produce a
regular mesh with spatial resolution of 0.025o. The detailed bathymetry al-
lows for better simulation of the neashore water physics such as dissipation
and triads, although the computational demands are increased.

The bathymetry shown in Fig. 1 exhibits differences between two coast-
lines (East and West of Scotland). The bathymetry changes significantly for
the West part, with expected conditions to be both deep and coastal water.
On the other hand, the East side of the Scottish coastline has a depth profile
rather constant across the East Side ≈ 50m for deeper locations.

3.2. Boundary Input

Two wind fields have been used for this wave modelling work. The
ERA-Interim Re-Analysis wind was obtained form the European Centre for
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Figure 1: Mesh domain, depth is in meters(m)

Medium Weather Forecasts (ECMWF), has a spatial resolution of 0.125o and
is available for 6-hours temporal resolution (Dee et al., 2011). The second
wind product is the Climate Forecast System Reanalysis denoted henceforth
as CFSR, provided by the National Centre for Environmental Prediction
(NCEP) (Saha et al., 2010). It offers 1-hour time-steps, with a spatial reso-
lution 0.3o. For both products parameters extracted are wind speeds zonal
(U10) and meridional (V10), corresponding to 10m height above mean sea
level. Which were formatted to a suitable input format to be assimilated in
SWAN, based on the corresponding spatial resolution.

Data included at CFSR dataset are products from several re-analysis tests
at NCEP, with period of availability from 1979-2010, for those characteristics.
Experimental comparisons have shown that the latest products have increase
their accuracy , in comparison with previous releases (Stopa et al., 2013).

The European Centre for Medium-Range Forecasts (ECMWF), offers
wind data with various spatial resolution spanning from 0.125o up to 3o.
Some issues have been identified in regards to ECMWF underestimation of
U10, but constant upgrades are performed with the latest at the end of June
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2013. This alleviated older problems by previous re-analysis, especially af-
ter 2010 new models were used to improve the fields for 2010-2011. The
temporal resolution available are 6-hr (public domain) 3-hr and 1-hr (under
permission) (Richardson et al., 2013).

SWAN requires initial spectral quantities to be assigned and after assess-
ment of previous hindcasts in the area, (Lavidas et al., 2014) screening of
the areas frequency bins and directions were given. Minimum frequency was
set to 0.04 Hz and maximum at 1 Hz with 24 frequency bins, and 24 direc-
tional bins used. In addition to wind input, wave boundary conditions were
also extracted from the ECMWF spectral database, and files where created
for the boundary conditions in SWAN, with Significant wave height (Hs)
in meters, Peak period (Tp) in seconds, Peak Direction (PkDir) in degrees,
and Directional Spreading (Dspr) in degrees recorded at 6-hourly intervals.
The above boundary information obtained from ECMWF were isolated at
specified point locations. In order to correctly apply them on the model
boundaries, the boundary lines were divided into several small sections of 1o

and then the corresponding wave input data were applied as boundaries.

3.3. Model Implementation

SWAN relays on solving Eq. 1 for all the components of the Eq. 2, in
regards with the boundary and wind input. The area covered is one quadrant
per time, for the computational step given, see Fig. 2, thus time resolution
will not only play a role in the step chosen but also in the accurate calculation
of the wave parameters and not increasing the computational requirements.

Figure 2: Iterative solution procedure for the wave energy by SWAN (Delft, 2014a)
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This means that after each propagation at a geographic grid point, SWAN
updates wave and spectral components and ”inserts” them into the next
iteration, alongside with the wind information of that cell. The upwind
component is responsible for determination on the spectral balance equation
and propagated energy. Thus, resolution of wind fields is of major concern
that affects not only the generation trend but also magnitude, propagation
velocities, and spectral shape.

Both wind products considered for this work run in the same SWAN
code, with selected physics custom for the area and activated as referred
in Section 2. Attention has been given in incorporating all the physical
elements that affect wave resource, whilst minimizing the irregular behaviour
by alternating and changing key terms such as the re-computation of the
boundary points and physical interactions (Zijlema et al., 2012; Rogers et al.,
2002; Dietrich et al., 2012).

4. Calibration and Validation of the Models

An initial small period was initially used to calibrate the model (Lavidas
et al., 2014). The results showed promise and established confidence that
the model can be extended for an annual run with the expectation of good
correlated results. Indicatively, correlation coefficients for two buoys located
in the West Scottish coastlines, were 0.98 and 0.97 for Hs. Similar behaviour
was presented for the peak period with coefficients from 0.92− 0.94. Biases
in the calibration process remained low for all quantities, see Figs. 3-4.

It has been recorded in several cases, the coastal Hs being rather small,
by having multiple benchmarks one can assess the performance of the model.
In Ris et al. (1999) the example of combining variable indexes was used, it
was stated that even if the rms is low a SI parameter may be extremely
high, something that will decrease the reliability of the model by missing
peaks or troughs. In Eqs 3-8 all statistical indices used for the comparison
of modelled results with buoy data are presented.

bias =
N∑
i=1

1

N
(Xi − Yi) (3)

rms =

√√√√ 1

N

N∑
i=1

(Xi − Yi)2 (4)
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Figure 3: Calibration of Blackstone buoy

01.01.10 26.01.10 20.02.10 17.03.10
0

5

10

m
e
te

rs

H
s

 

 

ERA CFSR Buoy

01.01.10 26.01.10 20.02.10 17.03.10
0

20

40

T
p

s
e
c
o
n
d
s

01.01.10 26.01.10 20.02.10 17.03.10
0

200

 P
k
Dir

d
e
g
re

e
s

Time

Figure 4: Calibration of West Hebrides buoy
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R =

N∑
i=1

((Xi −Xi)(Yi − Yi))√
((

N∑
i=1

((Xi −Xi)2)((
N∑
i=1

((Yi − Yi)2)

(5)

SI =
rms

1
N

N∑
i=1

Yi

(6)

MPI = |1− rms

rmschange
| (7)

rmschange =

√
Y 2
i

N
(8)

where Xi is the simulated wave parameter, Yi the buoy wave quantity, N
measurements. The rmschange is similar to the use of rms but the data we
take into consideration are only the observed. The use of several quantitative
indices will allow better classification, for example in some cases we may
obtain a good bias, small SI and a moderate MPI. Thus, by incorporating
more methods available, a correlation of the simulated and observed values
can be established (Ris et al., 1999; Komen et al., 1994). For these hindcasts
the Hs, Tp and Tz are compared with all the values.

A quantitative approach is used to determine accuracy between the dif-
ferent results and the buoy, allowing us to expand and investigate the wind
product effects. Quantitative metrics for comparing model results will be
the bias parameter, the root mean error (rms), correlation coefficient (R),
Scatter Index (SI) and model performance (MPI) indexes, as well as the
distributions obtained. The rms value is normalized with the observed and
simulated results over the duration of the data available, this will ensure a
proper comparison of SWAN simulations either they are performed in small
coastal areas, or bigger domains.

5. Results

The year of the hindcast is 2010, where buoys have available comparison
data. Buoy measurements are used to assess the quality of hindcasts. Since
CFSR and ECMWF have different temporal and spatial resolution it is im-
portant to quantify the differences between their modelled results and assess
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their accuracy. Numerical physical terms are set the same for both runs
minimizing potential non-similarities in final results. Assessment is carried
with the comparison of wave data to recorded wave conditions at specified
locations (CEFAS, 2014), compared annually and seasonally divided with
hindcast duration of 1-year in both cases.

The area under investigation is given in Fig. 1, four buoys under investi-
gation are located at the West and East side of Scotland, results are given
in terms of West and East side of Scotland, with four buoys in total two at
each side. Buoys are located at West Hebrides, Blackstone, Firth of Forth
and Moray Firth (CEFAS, 2014). Buoys were operated for 2010 recording
wave parameters and spectral data for 30 minutes intervals.

In Table 1 presents mean values for buoys and hindcast results, it has
to be noted that buoy recordings have missing data for some time intervals.
For this reason a post processing was applied to consider only recorded data
measurements for comparison. Annual results present similar trends as in
Stopa and Cheung (2014), whose work included a significantly larger dataset
and focused in the North American region. Their results also suggest that
CFSR wind have overestimations and higher scatter in contrast to ECMWF.
From our sub-sequent analysis similar trends are identified, though some
areas perform better pending on dataset.

From Figures 5-8 corresponding hindcast intervals are presented, it is
noticeable that in all cases generation trend shows good agreement. CFSR
dataset shows larger ”peaks” than the corresponding buoy time-series. Ta-
ble 1 shows the biases between hindcasts and wave parameters. CFSR have
consistently model higher Hsig, and lower periods (Tp, Tz). Resulting in gen-
eral over-estimation performance for Hsig and underestimations for periods.

Table 1: Annual Indexes for the wind datasets

West Hebrides Blackstone
Hs in m Tp in sec Tz in sec Hs in m Tp in sec Tz in sec

ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR
Average Buoy 2.25 2.25 9.90 9.90 6.23 6.23 2.02 2.02 9.72 9.72 5.96 5.96

Average SWAN 1.93 1.99 10.15 9.93 6.02 5.81 1.93 2.16 9.55 8.99 5.95 5.61
Firth of Forth Moray Firth

Hs in m Tp in sec Tz in sec Hs in m Tp in sec Tz in sec
Average Buoy 1.14 1.14 7.03 7.03 4.53 4.53 1.12 1.12 7.14 7.14 4.37 4.37

Average SWAN 0.97 1.47 8.08 7.02 5.20 4.6 0.90 1.11 8.08 7.23 4.65 4.40

To further assess performance annual measurements are separated in sea-
sons and compared with buoys. This allows examination and corresponding
effects winds have on seasonal hindcast. From January 1st until April 1st is
denoted as Season 1, April 1st to July 1st as Season 2, July 1st to October 1st
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Figure 5: Annual Hs timeseries at West Hebrides buoy with both wind products
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Figure 6: Annual Hs timeseries at BlackStone buoy with both wind products
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Figure 7: Annual Hs timeseries at Firth of Forth buoy with both wind products
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Figure 8: Annual Hs timeseries at Moray Firth buoy with both wind products

as Season 3 and by October 1st until December 31st as Season 4. Following
the evaluation and a further understanding of the affected physical terms is
presented. Tables 3-5, performance indices for the model results and buoy,
based on the different datasets. Although the dissemination of the results are
given for every buoy based on the characteristics that affect the performance
of the model.

In Figs. 9-10, the levels of incoming swells are shown. In both cases
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Figure 9: Hswell (m) for CFSR dataset
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Figure 10: Hswell (m) for ECMWF dataset

trends and fields have similar tracks, however magnitude for swell quantities
is slightly different. CFSR data tend to have similar magnitudes in their
Hswell components, however high swell areas covered are extended for CFSR
winds. Exposed boundaries of the location shown in Figs. 9-10, illustrate
the effect of wave boundary originating from the Atlantic, a highly volatile
environment that is inhabited by both wind seas and distant generated swells.
These incoming components affect the final wave energy resource of the area,
and their propagation is affected by the wind input.

First buoy analysed is the Blackstone buoy, located at the West Side of
the Scottish coastline near the Isle of Islay at 97 meters depth and oper-
ational from March 2009 until present (CEFAS, 2014). In Table 2, Fig. 6
and Figs. 11-12, the results for wave parameters used to characterise the
performance are presented. The buoy is located at intermediate to shallow
waters, meaning that triad non-linear interactions play a significant role in
the alteration of the wave field, the physics for which have been activated
accordingly. The correlation coefficient R and MPI are high for both mod-
els, the temporal improvement shows no alteration on the numerical solver of
SWAN. In fact the ECMWF dataset produces a slightly higher performance
for the quantities.

Seasons 1 and 4 (autumn and winter) have the highest average range
of Hs. Wind input by ECMWF presents underestimations for all seasons,
however biases are fairly small, with Season 3 hindcasting almost no bias. The
situation is different for CFSR hindcast. The increased temporal resolution
of the dataset led to higher peaks and overestimations (seasonal), as it can
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Figure 11: Hs and Tp at Blackstone
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Figure 12: Tz and PkDir Blackstone

be seen by the rms and a higher Scatter Index (SI). This may be expected
when the wave resource is at its peak, during winter months, although the
driving wind shows the same results for the ”less” energetic summer seasons.

Periods Tz and Tp exhibit similar high correlation coefficients, with both
models slightly underestimating the periods for winter and autumn (Season
3). In contrast to CFSR behaviour, ECMWF driven waves are overestimating
the spring and summer months (Season 3). No significant differences exist
and overall performance can be classified as high. In general CFSR data
attain higher peaks leading to overestimations, while ECMWF driven data
present lower differences and significantly lower SI.

Table 2: Blackstone Seasons Indexes

Blackstone
Season 1 Season 2

Hs Tp Tz Hs Tp Tz
ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR

Correlation 0.96 0.93 0.93 0.96 0.97 0.96 0.96 0.93 0.95 0.94 0.97 0.96
Average Buoy 2.15 2.15 10.47 10.47 6.24 6.24 1.64 1.64 9.71 9.71 5.94 5.94

Average SWAN 1.97 2.39 9.94 8.87 6.10 5.40 1.56 1.81 9.58 9.16 6.08 5.68
Bias -0.18 0.24 -0.53 -1.6 -0.13 -0.83 -0.08 0.17 -0.13 -0.54 0.14 -0.26
rms 0.51 0.92 3.54 4.25 1.34 1.45 0.35 0.62 2.45 2.8 1.04 1.28
SI 0.24 0.42 0.33 0.40 0.21 0.23 0.21 0.38 0.25 0.28 0.17 0.21

MPI 0.96 0.96 0.84 0.84 0.90 0.90 0.97 0.97 0.85 0.85 0.91 0.91
Season 3 Season 4

Hs Tp Tz Hs Tp Tz
ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR

Correlation 0.96 0.93 0.95 0.94 0.96 0.95 0.96 0.93 0.92 0.91 0.96 0.95
Average Buoy 1.90 1.90 8.90 8.90 5.59 5.59 2.39 2.39 9.78 9.78 6.07 6.07

Average SWAN 1.90 1.85 8.92 8.86 5.77 5.76 2.30 2.59 9.75 9.06 5.84 5.59
Bias 0.00 -0.05 0.02 -0.04 0.18 0.17 -0.09 0.20 -0.03 -0.72 -0.23 -0.48
rms 0.38 0.66 2.28 2.49 1.16 1.31 0.53 0.94 3.54 3.75 1.28 1.48
SI 0.19 0.34 0.25 0.28 0.20 0.23 0.22 0.39 0.36 0.38 0.21 0.24

MPI 0.97 0.97 0.86 0.86 0.91 0.91 0.96 0.96 0.85 0.85 0.91 0.91

The Hebrides buoy is also located alongside the West Scottish coastline,
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specifically the South part of the Island of Lewis, at 100 meters depth and op-
erational since 2009 (CEFAS, 2014). Both the West Hebrides and Blackstone
are located at the Atlantic side of Scotland, which involves higher values of
incoming waves and significant amounts of swells. The high wind resource
of the area constantly affects directionality of waves, local winds provide an
additional source of ”young” seas generation, which are be combined with
incoming swells.

As seen in Table 3 highest average values of Hs are recorded for winter
months. Correlation coefficient is good for both wind driven models. How-
ever, increased temporal resolution offers smaller biases for CFSR data with
similar SI and rms errors, see Fig. 5 and Figs. 13-14.

Table 3: West Hebrides Seasons Indexes

- West Hebrides
Season 1 Season 2

Hs Tp Tz Hs Tp Tz
ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR

Correlation 0.95 0.95 0.94 0.93 0.96 0.96 0.95 0.95 0.96 0.95 0.96 0.96
Average Buoy 2.69 2.69 10.89 10.89 6.83 6.83 1.98 1.98 9.89 9.89 6.21 6.21

Average SWAN 2.04 2.20 10.72 10.54 6.23 5.71 1.63 1.73 10.06 9.71 6.14 5.93
Bias -0.65 -0.49 -0.17 -0.35 0.60 -1.12 -0.35 -0.25 0.17 -0.18 -0.07 -0.28
rms 0.88 0.86 3.58 3.71 1.55 1.83 0.54 0.54 2.05 2.35 1.01 1.25
SI 0.32 0.32 0.32 0.34 0.22 0.26 0.27 0.27 0.20 0.23 0.16 0.20

MPI 0.95 0.95 0.83 0.83 0.89 0.89 0.97 0.97 0.85 0.85 0.90 0.90
Season 3 Season 4

Hs Tp Tz Hs Tp Tz
ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR

Correlation 0.96 0.96 0.96 0.96 0.91 0.91 0.96 0.95 0.95 0.94 0.96 0.95
Average Buoy 1.99 1.99 8.59 8.59 5.53 5.53 2.38 2.38 10.30 10.30 6.34 6.34

Average SWAN 1.71 1.69 9.19 8.21 5.72 5.78 2.23 2.30 10.62 10.27 5.98 5.83
Bias -0.28 -0.30 -0.27 0.38 0.59 0.25 -0.15 -0.08 0.32 -0.03 -0.36 -0.51
rms 0.59 0.79 0.71 5.21 2.96 1.84 0.61 0.61 2.44 2.6 1.12 1.25
SI 0.30 0.42 0.35 0.31 0.34 0.33 0.25 0.25 0.23 0.25 0.17 0.19

MPI 0.96 0.96 0.86 0.84 0.86 0.91 0.96 0.95 0.84 0.84 0.90 0.90

Period performance, as seen in Table 3 has more diverse alterations. Cor-
relation for both models is high, Season 2-3 exhibit similar results with closely
followed biases and rms. ECMWF has slightly better values this can be at-
tributed to the higher spatial resolution. For winter months Season 1 and
4 have different results. for Season 1 both models underestimate the Tp,
while CFSR also underestimate and has higher rms for all parameters. Sim-
ilar performance is exhibited for Tz with CFSR driven waves presenting a
constant underestimation.

The Moray Firth buoy is located at North-East of Scotland, at 54 meters
depth and has been active since 2008. The area is exposed to swells originat-
ing from the North side, while the East and West boundaries are large land
masses. Subsequently, swell components are not as strong as the previous
areas.
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Figure 13: Hs and Tp at West Hebrides
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Figure 14: Tz and PkDir at West Hebrides

Table 4: Moray Firth Seasons Indexes

Moray Firth
Season 1 Season 1

Hs Tp Tz Hs Tp Tz
ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR

Correlation 0.94 0.94 0.90 0.90 0.95 0.94 0.90 0.93 0.85 0.85 0.93 0.94
Average Buoy 1.47 1.47 7.96 7.96 4.89 4.89 0.72 0.72 6.58 6.58 3.96 3.96

Average SWAN 1.25 1.53 8.41 7.49 5.08 4.73 0.52 0.62 8.36 7.11 4.54 4.14
Bias -0.22 0.04 0.44 -0.47 0.19 -0.16 -0.20 -0.10 1.78 0.53 0.58 0.18
rms 0.49 0.54 3.52 3.45 1.42 1.42 0.32 0.28 3.99 3.58 1.50 1.30
SI 0.33 0.36 0.44 0.43 0.29 0.29 0.44 0.38 0.60 0.54 0.37 0.33

MPI 0.97 0.97 0.87 0.87 0.92 0.92 0.98 0.98 0.90 0.90 0.94 0.94
Season 3 Season 4

Hs Tp Tz Hs Tp Tz
ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR

Correlation 0.91 0.92 0.86 0.85 0.94 0.94 0.93 0.94 0.89 0.89 0.95 0.95
Average Buoy 0.91 0.91 6.14 6.14 3.99 3.99 1.37 1.37 7.86 7.86 4.63 4.63

Average SWAN 0.67 0.84 7.42 6.71 4.29 4.20 1.17 1.46 8.11 7.59 4.69 4.54
Bias -0.25 -0.07 1.28 0.56 0.30 0.20 -0.20 0.09 0.25 -0.27 0.06 -0.09
rms 0.42 0.40 3.84 3.64 1.27 1.29 0.44 0.46 3.45 3.59 1.14 1.04
SI 0.45 0.44 0.62 0.59 0.31 0.32 0.31 0.33 0.43 0.45 0.24 0.22

MPI 0.98 0.98 0.90 0.90 0.94 0.94 0.97 0.97 0.88 0.88 0.93 0.93

In this partially ”enclosed” environment generation of waves by the wind,
is satisfactory with correlation indexes over 0.9, while the model performance
MPI presents a very good model hindcast. Improved temporal resolution
of CFSR shows better performances. Specifically for Hs, all seasonal rms
errors have very close agreement, with ECMWF data presenting larger un-
derestimation when compared with CSFR biases, see Fig. 8 and Figs 15-16.

In all cases differences are in favour of CFSR wave data with reduced
average biases, see Table 4. period Tz has similar results with good correlation
factors and high MPI. On the other hand, the correlation of the Tp is above
0.85 for both fields, though it shows that CFSR consistently perform better
than the ECMWF with both models usually overestimating, see Table 4.
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Figure 15: Hs and Tp Moray Firth
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Figure 16: Tz and PkDir at Moray Firth

Due to the enhanced temporal resolution, the bias presents almost 50% less
than ECMWF, while the overall rms and SI indices are in favour of the
CFSR.

Final location under consideration, Firth of Forth, the buoy is at 65
meters depth and the site is located at the middle portion of Scotland, just
outside of Edinburgh. The location has similar characteristics as the Moray
Firth, with swell originating from the North boundary. The detailed indexes
are given in Table 5.

Table 5: Firth of Forth Seasons Indexes

Firth of Forth
Season 1 Season 2

Hs Tp Tz Hs Tp Tz
ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR

Correlation 0.97 0.89 0.94 0.93 0.96 0.95 0.94 0.87 0.89 0.88 0.93 0.94
Average Buoy 1.50 1.50 8.08 8.08 5.16 5.16 0.71 0.91 6.47 6.47 4.05 4.05

Average SWAN 1.32 1.91 8.87 7.78 5.81 5.14 0.60 0.93 7.82 6.51 5.01 4.29
Bias -0.18 0.41 0.78 -0.30 0.65 0.02 -0.11 0.22 1.35 0.04 0.96 0.24
rms 0.39 1.02 2.88 2.71 1.46 1.38 0.25 0.50 3.47 3.18 1.80 1.28
SI 0.26 0.67 0.35 0.33 0.28 0.26 0.35 0.70 0.53 0.49 0.44 0.31

MPI 0.97 0.97 0.87 0.87 0.92 0.92 0.98 0.98 0.90 0.90 0.93 0.93
Season 3 Season 4

Hs Tp Tz Hs Tp Tz
ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR ECMWF CFSR

Correlation 0.94 0.86 0.90 0.91 0.95 0.95 0.97 0.89 0.91 0.92 0.96 0.96
Average Buoy 0.88 0.88 6.24 6.24 4.11 4.11 1.46 1.46 7.55 7.55 4.79 4.79

Average SWAN 0.71 1.10 6.95 6.11 4.55 4.21 1.24 1.95 8.69 7.67 5.44 4.95
Bias -0.17 0.22 0.71 -0.13 0.44 0.11 -0.22 0.49 1.14 0.12 0.64 0.16
rms 0.32 0.69 2.99 2.50 1.29 1.14 0.38 0.95 3.34 2.80 1.40 1.01
SI 0.37 0.78 0.47 0.40 0.31 0.27 0.26 0.65 0.44 0.37 0.29 0.21

MPI 0.98 0.98 0.90 0.90 0.93 0.93 0.97 0.97 0.88 0.88 0.92 0.92

This location has smallest wave recordings, due to its location most waves
are dissipated and swells are not as strong as in the West part. However, the
winter-autumn season still present the highest recorded resource. In contrast
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to Moray Firth, performance of CFSR is lower than ECMWF, MPI is similar
for both models but ECMWF presents less errors and has smaller biases.
Hs is overestimated for all seasons with CFSR, ECMWF underestimates
Hs value very close to buoy mean. For all seasons SI of CFSR is under-
performing significantly, see Fig. 7 and Figs. 17-18.
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Figure 17: Hs and Tp at Firth of Forth
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Figure 18: Tz and PkDir at Firth of Forth

The periods Tp and Tz have better performance with the CFSR field. The
higher temporal resolution allows for quicker directional information and at
such coastal waters, temporal effects improve the periods measured. The
rms period errors are substantially lower with the CFSR while the SI are
reduced.

The underestimations and overestimations that occur with the use of
different wind datasets affect not only the hindcast but the distributions of
the modelled data. As showed earlier in this section, the performance of
the model depends not only on the winds but the location characteristics as
well. The combination of shallow water physical aspects and the wind set
selection will ultimately reduce or increase the accuracy of the probability
distribution for the measured quantities. In Fig. 19 the ECMWF wave driven
model results exhibit better performance, with scatter diagram values having
a closer correlation to measured data. The overall behaviour of ECMWF
wind product, although it offers persistence in underestimations, shows that
the quality of their errors is reduced leading to less discrepancies.

In Fig. 20, similar behaviour is expressed. The nearshore water physical
activities in the region increase the scattering possibility throughout the year
as more non-linear terms such as diffusion and refraction affect the waves.
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Figure 19: Scatter diagrams for Blackstone CFSR (left panel), and ECMWF (right
panel)
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Figure 20: Scatter diagrams for Moray Firth CFSR (left panel), and ECMWF (right
panel)

Even at nearshore environments the SWAN Hs given by the driven ECMWF
winds, presents smaller annual bias although their maxima values are smaller.
CFSR due to their temporal resolution generate a ”peakier” environment
with more changes in the maximum and minimum parameters.

6. Discussion

In the work Sterl et al. (1998), ECMWF sets were validated against
recorded wind and through the use of WAM oceanic numerical model, in
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order to assess wind quality. The application of WAM revealed underestima-
tions but not in a consistent way. The overall performance of the set showed
improved wind fields, though it was evident that not every area was behaving
in an expected manner. Suggestions were made, in reference, to usage and
increase of temporal resolution, and would perhaps lead to the increase of the
accuracy and reduce biases. Caires et al. (2004) investigated differences of
wind products and numerical wave models at a global scale. Same locations
showed different biases and scatter indices, Several over and underestimation
were present for same locations, depending on the wind dataset used. The
authors concluded, that the wind datasets affect significantly the potential
wave performance, and the selection of the appropriate of a dataset is not a
trivial process. Different oceanic locations and global positions, may require
tailored approaches.

It has been proposed that the use of a higher temporal wind input scheme
improves the actual forecasts (Cavaleri, 2009) although optimizing only based
on temporal inputs is not sufficient. In this study we considered to different
re-analysis spatio-temporal wind dataset, coupled with the SWAN model.
The hindcact quantities were shown to be highly dependent on the wind
input characteristics. In our study both hindcast datasets, showed a good
generation and correlation of quantities. However, as Cavaleri and Bertotti
(2006); Cavaleri (2009) discussed that also spatial resolution of the input
wind data alters hindcast results. This meant that pending on our location
West or East of Scotland, performance varied. CFSR showed a tendency to
over-estimate Hs but had lower performance in rms and larger SI. On the
other hand the ECMWF wind driven dataset showed higher under-estimation
of Hs, but improved SI and periods performance.

7. Conclusions

This study was focused on the assessment of different wind datasets for
use in numerical wave modelling that strongly depend wind attributed. The
use of SWAN custom for coastal areas allows to display the effects of wind
in nearshore applications. SWAN proves to be a reliable source for repro-
ducing complex seas, discrepancies are mainly dependent on the quality and
behaviour of the wind used.

Different spatio-temporal wind dataset are used. The interaction of winds
and the generated waves reveals differences in hindcast for each of the datasets.
Influence of temporal and spatial resolution is very important for wave re-
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source assessment, thus the selection of a proper wind field would optimise
and increase the confidence in the hindcast or future forecasted waves. CFSR
data have a high temporal resolution (1-hr) in contrast with the ECMWF
(6-hr). Results revealed that for the West coastline area of Scotland, the
ECMWF outperform its counterpart hindcasting the wave resource, with
smaller biases, low rms errors and less scattering. The 6-hourly ECMWF
wind inputs data show an trend in underestimating the wave resource (Hs)
presenting lower peaks.

East side of Scotland although exposed to high wind resource, has ”en-
closed” coastline characteristics. For Moray Firth seasonal hindcast favours
CFSR that outperformed the ECMWF model. Indices showed that ECMWF
consistently underestimates Hs with peak Tp slightly overestimated.

Numerical wave modelling is dependent on the quality of wind data, re-
sults revealed a trend that seems to appear in both datasets. Overall for
the region of Scotland and North Sea, ECMWF data present better hindcast
results for the region. ECMWF driven numerical wave model exhibits lower
differences with recorded wave, and although Hs are underestimated SI and
biases are smaller and closer to buoy measurements.

This does not reduce the performance of CFSR data, their higher tempo-
ral resolution allowed better simulation of peaks which may be advantageous
for studies concerning extreme value analysis, for engineering applications.
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